Publications by Author: Abdelhadi, Adel

2022
KADRI O, Benyahia A, Abdelhadi A. Tifinagh Handwriting Character Recognition Using a CNN Provided as a Web Service. International Journal of Cloud Applications and Computing (IJCAC) [Internet]. 2022;12 (1). Publisher's VersionAbstract
Many cloud providers offer very high precision services to exploit Optical Character Recognition (OCR). However, there is no provider offers Tifinagh Optical Character Recognition (OCR) as Web Services. Several works have been proposed to build powerful Tifinagh OCR. Unfortunately, there is no one developed as a Web Service. In this paper, we present a new architecture of Tifinagh Handwriting Recognition as a web service based on a deep learning model via Google Colab. For the implementation of our proposal, we used the new version of the TensorFlow library and a very large database of Tifinagh characters composed of 60,000 images from the Mohammed Vth University in Rabat. Experimental results show that the TensorFlow library based on a Tensor processing unit constitutes a very promising framework for developing fast and very precise Tifinagh OCR web services. The results show that our method based on convolutional neural network outperforms existing methods based on support vector machines and extreme learning machine.
KADRI O, Benyahia A, Abdelhadi A. Tifinagh Handwriting Character Recognition Using a CNN Provided as a Web Service. International Journal of Cloud Applications and Computing (IJCAC) [Internet]. 2022;12 :1-17. Publisher's VersionAbstract

Many cloud providers offer very high precision services to exploit Optical Character Recognition (OCR). However, there is no provider offers Tifinagh Optical Character Recognition (OCR) as Web Services. Several works have been proposed to build powerful Tifinagh OCR. Unfortunately, there is no one developed as a Web Service. In this paper, we present a new architecture of Tifinagh Handwriting Recognition as a web service based on a deep learning model via Google Colab. For the implementation of our proposal, we used the new version of the TensorFlow library and a very large database of Tifinagh characters composed of 60,000 images from the Mohammed Vth University in Rabat. Experimental results show that the TensorFlow library based on a Tensor processing unit constitutes a very promising framework for developing fast and very precise Tifinagh OCR web services. The results show that our method based on convolutional neural network outperforms existing methods based on support vector machines and extreme learning machine.

2021
Abdelhadi A. Vers une Approche des Systèmes Multi-Agents et Méthodes d’Emergence pour la Maintenance Systématique. [Internet]. 2021. Publisher's VersionAbstract

L’objectif principal de notre thèse est de proposer des approches hybride basées sur les SMA d’un côté, et l’exploitation de méthodes d’émergences tels que les Algorithmes Génétiques (AG) et les algorithmes du Système Immunitaire Artificiel (SIA), pour mieux intégrer des politiques de maintenance préventive systématique dans les ateliers d’ordonnancement. L’objectif est de minimiser les temps d’exécutions pendant le déroulement de l’ordonnancement. Nous avons utilisé des opérateurs avancés tels que ; la clé aléatoire pour le codage, la sélection de classement, le croisement uniforme et la mutation ponctuelle unique. Par ailleurs, nous avons défini une nouvelle procédure de calcul d'affinité dans le cadre de l’approche FSHMAIA. Cette procédure est basée sur le calcul d’un rapport de similarité des anticorps. Pour cela, nous avons proposé un algorithme basé sur quatre critère pour calculer le rapport se similarité. Nous avons également évalué les adaptations de certaines heuristiques bien connues, y compris Johnson (m / 2, m / 2), NEHH, PCDT et PLDT, Un benchmark a été établi pour évaluer les algorithmes. Le benchmark contenu jusqu'à 100 jobs et 8 étages. Tous les résultats ont montré que le FSHMAIA donne les meilleurs résultats par rapport aux autres algorithmes, dans les trois politiques de la MP. L’originalité de cette thèse réside dans l’utilisation des SMA avec les AG et les SIA dans l’intégration des politiques de maintenance préventive systématique dans un ordonnancement de type flow shop hybride.

2020
Abdelhadi A, Mouss L-H, KADRI O. HYBRID MULTI-AGENT AND IMMUNE ALGORITHM APPROACH TO HYBRID FLOW SHOPS SCHEDULING WITH SDST. ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING [Internet]. 2020;18 (3). Publisher's VersionAbstract
The existing literature on process scheduling issues have either ignored installation times or assumed that installation times on all machines is free by association with the task sequence. This working arrangement addresses hybrid flow shop scheduling issues under which there are sequence-dependent configuration times referred to as HFS with SDST. This family of production systems are common in industries such as biological printed circuit boards, metallurgy and vehicles and automobiles making. Due to the increasing complexity of industrialized sectors, simple planning systems have failed to create a realistic industrial scheduling. Therefore, a hybrid multi-agent and immune algorithm can be used as an alternative approach to solve complex problems and produce an efficient industrial schedule in a timely manner. We propose in this paper a multi-agent and immune hybrid algorithms for scheduling HFS with SDST. The findings of this paper suggest that the proposed algorithm outperforms some of the existing ones including PSO (particle swarm optimization), GA (Genetic Algorithm), LSA (Local Search Algorithm) and NEHH (Nawaz Enscore and Ham).
Abdelhadi A, Mouss L-H, KADRI O. HYBRID MULTI-AGENT AND IMMUNE ALGORITHM APPROACH TO HYBRID FLOW SHOPS SCHEDULING WITH SDST. https://www.ajme.ro/PDF_AJME_2020_3/L15.pdf [Internet]. 2020;18 (3). Publisher's VersionAbstract
The existing literature on process scheduling issues have either ignored installation times or assumed that installation times on all machines is free by association with the task sequence. This working arrangement addresses hybrid flow shop scheduling issues under which there are sequence-dependent configuration times referred to as HFS with SDST. This family of production systems are common in industries such as biological printed circuit boards, metallurgy and vehicles and automobiles making. Due to the increasing complexity of industrialized sectors, simple planning systems have failed to create a realistic industrial scheduling. Therefore, a hybrid multi-agent and immune algorithm can be used as an alternative approach to solve complex problems and produce an efficient industrial schedule in a timely manner. We propose in this paper a multi-agent and immune hybrid algorithms for scheduling HFS with SDST. The findings of this paper suggest that the proposed algorithm outperforms some of the existing ones including PSO (particle swarm optimization), GA (Genetic Algorithm), LSA (Local Search Algorithm) and NEHH (Nawaz Enscore and Ham).
Abdelhadi A, Mouss LH, KADRI O. HYBRID MULTI-AGENT AND IMMUNE ALGORITHM APPROACH TO HYBRID FLOW SHOPS SCHEDULING WITH SDST. Academic Journal of Manufacturing EngineeringAcademic Journal of Manufacturing Engineering. 2020;18.
2017
KADRI O, Mouss LH, Abdelhadi A. Fault diagnosis for a milk pasteurisation plant with missing data. International Journal of Quality Engineering and TechnologyInternational Journal of Quality Engineering and Technology. 2017;6 :123-136.
2016
KADRI O, Abdelhadi A, Mouss L-H. TOOLBOX SUPPORTS GROUP AWARENESS IN GROUPWARE. Annals. Computer Science SeriesAnnals. Computer Science Series. 2016;14.
2012
Abdelhadi A, Mouss LH. The use of artificial immune system algorithms in monitoring industrial. 2012 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). 2012 :50-55.