Publications by Year: 2019

2019
Abdessemed F. Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator. International Journal of Robotics, Theory and ApplicationsInternational Journal of Robotics, Theory and Applications. 2019;5 :47-62.
Sellali M, Betka A, Drid S, Djerdir A, Allaoui L, Tiar M. Novel control implementation for electric vehicles based on fuzzy-back stepping approach. EnergyEnergy. 2019;178 :644-655.Abstract
The present paper deals with a real-time assessment of a fuzzy –backstepping based control applied to a battery-supercapacitor (SC) hybrid energy storage system (HESS). To properly emulate the behavior of an electric vehicle, the proposed topology is extended to a PMSM drive, that represents the traction part. The proposed control scheme is divided into two parts: The first part plans a fuzzy logic power management approach, to operate the system in a smart way: First, It ensures an optimal load power-sharing, focusing the operation of the involved sources in a safe mode. Second, a quite regulation of both the dc bus and the SC voltage without additional controllers. The second part proposes a back-stepping direct torque control (BS-DTC), associated to a space vector modulation (SVM) strategy, to ensure decoupled torque and flux control of the PMSM machine. The experimental results, conducted on a small …
Akleylek S, Soysaldı M, Boubiche DE, Toral-Cruz H. A Novel Method for Polar Form of Any Degree of Multivariate Polynomials with Applications in IoT. Sensors (Basel)Sensors (Basel). 2019;19 :903.Abstract
Identification schemes based on multivariate polynomials have been receiving attraction in different areas due to the quantum secure property. Identification is one of the most important elements for the IoT to achieve communication between objects, gather and share information with each other. Thus, identification schemes which are post-quantum secure are significant for Internet-of-Things (IoT) devices. Various polar forms of multivariate quadratic and cubic polynomial systems have been proposed for these identification schemes. There is a need to define polar form for multivariate dth degree polynomials, where d >= 4 . In this paper, we propose a solution to this need by defining constructions for multivariate polynomials of degree d >= 4 . We give a generic framework to construct the identification scheme for IoT and RFID applications. In addition, we compare identification schemes and curve-based cryptoGPS which is currently used in RFID applications.
Touahria A, Bougriou C. Numerical Investigation of a New Ventilation-radiator. Instrumentation, Mesures, MétrologiesInstrumentation, Mesures, Métrologies. 2019;18.
Noui A, Karech T, Bouzid T. A Numerical Investigation of Dynamic Behavior of a Unit Cell of a Loose sand Reinforced by Stone Column Under the Effect of Gravity Using Finn Model. Indian Geotechnical JournalIndian Geotechnical Journal. 2019;49 :255-264.
Guelfen H, Kittaneh F. On Numerical Radius Inequalities for Operator Matrices. Numerical Functional Analysis and OptimizationNumerical Functional Analysis and Optimization. 2019;40 :1231-1241.
Abderraouf B, Brahim BENMOHAMMED. Numerical simulation of chip formation in case of orthogonal machining process. The international conference on innovative materials, manufacturing, and advanced technologies (IMMAT’2019),17-19 Octobre, . 2019.
Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

AMADJI M, Ameddah H, Mazouz H. Numerical study of the biomimetic M6-C Prosthesis with viscoelastic core. UPB Sci Bull, Series DUPB Sci Bull, Series D. 2019;81 :121-134.
Hassinet L, Si-Ameur M. Numerical Study on Natural Convection in a Porous Cavity That is Partially Heated and Cooled by Sinusoidal Temperature at Vertical Walls. Journal of Porous MediaJournal of Porous Media. 2019;22.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Lombarkia F, Boussaid A. Operator equations and inner inverses of elementary operators. Linear and Multilinear AlgebraLinear and Multilinear Algebra. 2019.Abstract
Let E,F,G,D be infinite complex Banach spaces and B(F,E) the Banach space of all bounded linear operators from F into E. Consider A1,A2∈B(F,E), B1,B2∈B(D,G)B1,B2∈B(D,G). Let MA1,B1:X→A1XB1 be the multiplication operator on B(G,F) induced by A1,B1. In particular, LA1=MA1,I and RB1=MI,B1, where I is the identity operator are the left and the right multiplication operators, respectively. The elementary operator Ψ defined on B(G,F)B(G,F) is the sum of two multiplication operators Ψ=MA1,B1+MA2,B2. This paper gives necessary and sufficient conditions for the existence of a common solution of the operator equations MA1,B1(X)=C1 and MA2,B2(X)=C2 and derive a new representation of the general common solution via the inner inverse of the elementary operator Ψ; we apply this result to determine new necessary and sufficient conditions for the existence of a Hermitian solution and a representation of the general Hermitian solution to the operator equation MA,B(X)=C. As a consequence, we obtain well-known results of Dajic´ and Koliha.
Bouali K, KADID FZ, BERGOUG N, Abdessemed R. OPTIMAL DESIGN OF INDUCTION MAGNETOHYDRODYNAMIC PUMP BY SIMULATED ANNEALING METHOD. Rev. Roum. Sci. Techn.– Électrotechn. et ÉnergRev. Roum. Sci. Techn.– Électrotechn. et Énerg. 2019;64 :317–321.Abstract
The magnetohydrodynamics (MHD) is an important interdisciplinary field. It is the interaction between an electromagnetic field and an electrically conducting fluid. Electromagnetic pumps are widely used for the transportation of the fluids in a variety of technological processes. The advantage of these devices is that permits the pumping of liquids without moving parts. The design of the pump is considered as an optimization problem where the objective function is the minimum of the MHD pump mass with both geometrical and electromagnetic contraints type. The obtained optimization results using the finite volume method with Matlab software show the performances of the used stochastic simulated annealing method.
Fateh MOUMEN, Ayache HEMAL. Optimisation de la rugosité de surface de l&⋕39;acier doux en utilisant la méthode de surface de réponse (Tagushi). 2019.
Haoues M, Dahane M, MOUSS NK. Optimization of single outsourcer–single subcontractor outsourcing relationship under reliability and maintenance constraints. Journal of Industrial Engineering InternationalJournal of Industrial Engineering International. 2019;15 :395-409.
Brahim L, Lakhdar N, Chebbara F, Boulesbaa M, Dendouga A, BENDIB T. Optimization of ZnTe:O solar cell using genetic algorithms. 2018 International Conference on Communications and Electrical Engineering (ICCEE) [Internet]. 2019. Publisher's VersionAbstract

In this paper, we study the intermediate band solar cell (IBSC) and present the influence of the physical and geometrical parameters of the solar cell with intermediate band using the model of our approach based on genetic algorithms (GAs). These parameters include absorber width, the acceptor and donor concentration and the absorption coefficient. This analysis based on genetic algorithm is used to improve these parameters and systematically enhance the solar cell performances.

Sahli Y, Moussa HB, Zitouni B. Optimization study of the produced electric power by SOFCs. International Journal of Hydrogen EnergyInternational Journal of Hydrogen Energy. 2019;44 :22445-22454.
Hichem F, Fayçal DJEFFAL, Benhaya A. Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering, ISSN 0749-6036. Superlattices and MicrostructuresSuperlattices and Microstructures. 2019;Volume 129 :pp 176-184.Abstract
This paper presents the optimization, elaboration and characterization of a new TCO (Transparent Conductive Oxides) electrode based on ITO/Ag/ITO multilayer design that enables overcoming the trade-off between the electrical and optical properties. A new hybrid approach combining the investigated design and Particle Swarm Optimization (PSO) technique is conducted with the aim of maximizing the Haacke Figures of merit (FoM). It is found that the optimized ITO/Ag/ITO tri-layered design paves a new path toward achieving a high FoM of 125 × 10-3Ω-1. Such improvement is attributed to the improved light management achieved by the efficient modulation of the Ag sub-layer geometry. Subsequently, the optimized multilayer design is fabricated using RF magnetron sputtering technique. The structural, optical and electrical properties associated with the deposited ITO/Ag/ITO multilayer structure are also analyzed. It is found that the fabricated TCO-based electrode shows a high transmittance over than 94.1% and a low sheet resistance of 4.5Ω × sq-1, which is in good agreement with the theoretical predictions. Therefore, the proposed design methodology based on experiments assisted by PSO metaheuristic approach offers exciting opportunities for bridging the gap between transparency and conductivity characteristics. This makes the elaborated ITO/Ag/ITO multilayer design suitable for high-performance optoelectronic applications.
Titouna C, TITOUNA F, Ari AAA. Outlier detection algorithm based on mahalanobis distance for wireless sensor networks. 2019 International Conference on Computer Communication and Informatics (ICCCI). 2019 :1-6.
Haoues M, Dahane M, Mouss NK. Outsourcing optimization in two-echelon supply chain network under integrated production-maintenance constraints. Journal of Intelligent ManufacturingJournal of Intelligent Manufacturing. 2019;30 :701-725.

Pages