2020
Selloum R, Ameddah H, Brioua M.
Non-Destructive Evaluation for an Exactitude Reproduction of Form by Reverse Engineering in an Additive Manufacturing Process. ASTM International Conference on Additive Manufacturing ICAM2020, November 16-20, Webinar. 2020.
Ameddah H, Brioua M.
OPTIMAL SHAPE REPRODUCTION OF AN INTERVERTEBRAL PROSTHESIS “COFLEX” FOR ADDITIVE MANUFACTURING, in
7th International Conference Integrity-Reliability-Failure. J.F. Silva Gomes and S.A. Meguid (editors), INEGI-FEUP ; 2020 :487-488.
Publisher's VersionAbstractThe coflex Interlaminar Technology is an interlaminar stabilization device indicated for use in one or two level lumbar stenosis from L1-L5. It is used in skeletally mature patients with at least moderate impairment in function who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least 6 months of non-operative treatment. Our study is focused on the evaluation and biomechanical analysis of osteosynthesis implants and in particular the Corflex-F implant to redefine a new approach to the "Coflex" interspinatus implant using particles swarm optimisation for additive manufacturing, then to study these biomechanical performances.
Amaddah H, Brioua M.
Optimal shape reproduction of an intervertebral prosthesis “COFLEX” for additive manufacturing. 7th International Conference Integrity-Reliability-Failure. J.F. Silva Gomes and S.A. Meguid (editors), INEGI-FEUP (2020),. 2020 :487-488.
Amaddah H, Brioua M.
Optimal shape reproduction of an intervertebral prosthesis “COFLEX” for additive manufacturing. 7th International Conference Integrity-Reliability-Failure. J.F. Silva Gomes and S.A. Meguid (editors), INEGI-FEUP (2020),. 2020 :487-488.
Ameddah H, Brioua M.
OPTIMAL SHAPE REPRODUCTION OF AN INTERVERTEBRAL PROSTHESIS “COFLEX” FOR ADDITIVE MANUFACTURING, in
7th International Conference Integrity-Reliability-Failure. J.F. Silva Gomes and S.A. Meguid (editors), INEGI-FEUP ; 2020 :487-488.
Publisher's VersionAbstractThe coflex Interlaminar Technology is an interlaminar stabilization device indicated for use in one or two level lumbar stenosis from L1-L5. It is used in skeletally mature patients with at least moderate impairment in function who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least 6 months of non-operative treatment. Our study is focused on the evaluation and biomechanical analysis of osteosynthesis implants and in particular the Corflex-F implant to redefine a new approach to the "Coflex" interspinatus implant using particles swarm optimisation for additive manufacturing, then to study these biomechanical performances.
Drias T, Khedidja A, Belloula M, Badraddine S, Saibi K.
Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development [Internet]. 2020;11.
Publisher's VersionAbstractThis paper studies aquifer’s hydrodynamic behavior by combining a flow-simulation model with transmissivity optimization (cokriging) in order to provide an optimal management scheme for the groundwater aquifer. The use of a cokriging approach improves the transmissivity data which are insufficient for the database of the groundwater flow simulation model. The obtained results are then used to model the groundwater flow of the Tebessa-Morsott shallow aquifer, located in NE Algeria, under a steady and transient regime. The results of the model calibration for the steady-state (year 2010) show that the recharge by rainfall and leakage rate are similar compared to those calculated by the analytical approach, (84,354 m3/day for the recharge and 36,986 m3/day for pumped water flow rate). The results of the transient regime show the alluvial aquifer affected by large drawdowns reaching 40 m over 20 years (year 2030 scenario) due to increase in water exploitation from pumping wells to answer water needs of the Tebessa region.
Drias T, Khedidja A, Belloula M, Badraddine S, Saibi K.
Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development [Internet]. 2020;11.
Publisher's VersionAbstractThis paper studies aquifer’s hydrodynamic behavior by combining a flow-simulation model with transmissivity optimization (cokriging) in order to provide an optimal management scheme for the groundwater aquifer. The use of a cokriging approach improves the transmissivity data which are insufficient for the database of the groundwater flow simulation model. The obtained results are then used to model the groundwater flow of the Tebessa-Morsott shallow aquifer, located in NE Algeria, under a steady and transient regime. The results of the model calibration for the steady-state (year 2010) show that the recharge by rainfall and leakage rate are similar compared to those calculated by the analytical approach, (84,354 m3/day for the recharge and 36,986 m3/day for pumped water flow rate). The results of the transient regime show the alluvial aquifer affected by large drawdowns reaching 40 m over 20 years (year 2030 scenario) due to increase in water exploitation from pumping wells to answer water needs of the Tebessa region.
Drias T, Khedidja A, Belloula M, Badraddine S, Saibi K.
Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development [Internet]. 2020;11.
Publisher's VersionAbstractThis paper studies aquifer’s hydrodynamic behavior by combining a flow-simulation model with transmissivity optimization (cokriging) in order to provide an optimal management scheme for the groundwater aquifer. The use of a cokriging approach improves the transmissivity data which are insufficient for the database of the groundwater flow simulation model. The obtained results are then used to model the groundwater flow of the Tebessa-Morsott shallow aquifer, located in NE Algeria, under a steady and transient regime. The results of the model calibration for the steady-state (year 2010) show that the recharge by rainfall and leakage rate are similar compared to those calculated by the analytical approach, (84,354 m3/day for the recharge and 36,986 m3/day for pumped water flow rate). The results of the transient regime show the alluvial aquifer affected by large drawdowns reaching 40 m over 20 years (year 2030 scenario) due to increase in water exploitation from pumping wells to answer water needs of the Tebessa region.
Drias T, Khedidja A, Belloula M, Badraddine S, Saibi K.
Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development [Internet]. 2020;11.
Publisher's VersionAbstractThis paper studies aquifer’s hydrodynamic behavior by combining a flow-simulation model with transmissivity optimization (cokriging) in order to provide an optimal management scheme for the groundwater aquifer. The use of a cokriging approach improves the transmissivity data which are insufficient for the database of the groundwater flow simulation model. The obtained results are then used to model the groundwater flow of the Tebessa-Morsott shallow aquifer, located in NE Algeria, under a steady and transient regime. The results of the model calibration for the steady-state (year 2010) show that the recharge by rainfall and leakage rate are similar compared to those calculated by the analytical approach, (84,354 m3/day for the recharge and 36,986 m3/day for pumped water flow rate). The results of the transient regime show the alluvial aquifer affected by large drawdowns reaching 40 m over 20 years (year 2030 scenario) due to increase in water exploitation from pumping wells to answer water needs of the Tebessa region.
Drias T, Khedidja A, Belloula M, Badraddine S, Saibi K.
Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development [Internet]. 2020;11.
Publisher's VersionAbstractThis paper studies aquifer’s hydrodynamic behavior by combining a flow-simulation model with transmissivity optimization (cokriging) in order to provide an optimal management scheme for the groundwater aquifer. The use of a cokriging approach improves the transmissivity data which are insufficient for the database of the groundwater flow simulation model. The obtained results are then used to model the groundwater flow of the Tebessa-Morsott shallow aquifer, located in NE Algeria, under a steady and transient regime. The results of the model calibration for the steady-state (year 2010) show that the recharge by rainfall and leakage rate are similar compared to those calculated by the analytical approach, (84,354 m3/day for the recharge and 36,986 m3/day for pumped water flow rate). The results of the transient regime show the alluvial aquifer affected by large drawdowns reaching 40 m over 20 years (year 2030 scenario) due to increase in water exploitation from pumping wells to answer water needs of the Tebessa region.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C.
Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Science of The Total Environment [Internet]. 2020;746.
Publisher's VersionAbstractThis study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.
Djeffal E-A.
The best known interior point algorithm for thec linear optimization. 3rd International Conference on Mathematics and Statistics, February 6-8, American University of Sharijah. 2020.
Bouhoufani O, Hamchi I.
Coupled System of Nonlinear HyperbolicEquations with Variable-Exponents: GlobalExistence and Stability. Mediterr. J. Math [Internet]. 2020;17 (166).
Publisher's VersionAbstractIn this paper, we consider a coupled system of two nonlinearhyperbolic equations with variable-exponents in the damping and sourceterms. Under suitable assumptions on the intial data and the variableexponents, we prove a global existence theorem, using the Stable-setmethod. Then, we establish a decay estimate of the solution energy, byKomornik’s integral approach.