2021
Bellal SE, Mouss LH, Sahnoun M’hammed, Messaadia M.
Cost Optimisation for Wheelchair Redesign. 2021 1st International Conference On Cyber Management And Engineering (CyMaEn) [Internet]. 2021 :1-5.
Publisher's VersionAbstractRequirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don't meet international standards. However, developing countries are obliged to purchase products from developed countries that don't necessarily meet all user's requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bellal SE, Mouss LH, Sahnoun M’hammed, Messaadia M.
Cost Optimisation for Wheelchair Redesign. 2021 1st International Conference On Cyber Management And Engineering (CyMaEn) [Internet]. 2021 :1-5.
Publisher's VersionAbstractRequirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don't meet international standards. However, developing countries are obliged to purchase products from developed countries that don't necessarily meet all user's requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bellal SE, Mouss LH, Sahnoun M’hammed, Messaadia M.
Cost Optimisation for Wheelchair Redesign. 2021 1st International Conference On Cyber Management And Engineering (CyMaEn) [Internet]. 2021 :1-5.
Publisher's VersionAbstractRequirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don't meet international standards. However, developing countries are obliged to purchase products from developed countries that don't necessarily meet all user's requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bellal SE, Mouss LH, Sahnoun M’hammed, Messaadia M.
Cost Optimisation for Wheelchair Redesign. 2021 1st International Conference On Cyber Management And Engineering (CyMaEn) [Internet]. 2021 :1-5.
Publisher's VersionAbstractRequirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don't meet international standards. However, developing countries are obliged to purchase products from developed countries that don't necessarily meet all user's requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bouhoufani O, Hamchi I.
Coupled System of Nonlinear Hyperbolic Equations with Variable-Exponents: Global Existence and Stability (vol 17, 166, 2020). MEDITERRANEAN JOURNAL OF MATHEMATICS [Internet]. 2021;18.
Publisher's VersionAbstract
In this paper, we consider a coupled system of two nonlinear hyperbolic equations with variable-exponents in the damping and source terms. Under suitable assumptions on the intial data and the variable exponents, we prove a global existence theorem, using the Stable-set method. Then, we establish a decay estimate of the solution energy, by Komornik’s integral approach.
Bouhoufani O, Hamchi I.
Coupled System of Nonlinear Hyperbolic Equations with Variable-Exponents: Global Existence and Stability (vol 17, 166, 2020). MEDITERRANEAN JOURNAL OF MATHEMATICS [Internet]. 2021;18.
Publisher's VersionAbstract
In this paper, we consider a coupled system of two nonlinear hyperbolic equations with variable-exponents in the damping and source terms. Under suitable assumptions on the intial data and the variable exponents, we prove a global existence theorem, using the Stable-set method. Then, we establish a decay estimate of the solution energy, by Komornik’s integral approach.
Nacer F, DRIDI H.
The Creation of Development Regions as Input to the Regional Development in the North-East Wilayas (Departments) of Algeria. Analele Universităţii din Oradea, Seria GeografieAnalele Universităţii din Oradea, Seria Geografie [Internet]. 2021;31 :1-10.
Publisher's VersionAbstract
-
The research paper aims to create development region, as itis a means for reorganizing the potential for development, as the research work dealt with a systematic vision based on the merging of the results of statistical analysis with the principles adopted in regional divisions, we have identified three regions with different developmental characteristics; the north eastern developmental region, the Constantine development region and the eastern high plains region. The results of the work are shown in a map of development regions were the final outputs of the research paper are prepared.
-
Copyright of Annals of the University of Oradea, Geography Series / Analele Universitatii din Oradea, Seria Geografie is the property of University of Oradea, Department of Geography, Tourism & Territorial Planning and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.
Nacer F, DRIDI H.
The Creation of Development Regions as Input to the Regional Development in the North-East Wilayas (Departments) of Algeria. Analele Universităţii din Oradea, Seria GeografieAnalele Universităţii din Oradea, Seria Geografie [Internet]. 2021;31 :1-10.
Publisher's VersionAbstract
-
The research paper aims to create development region, as itis a means for reorganizing the potential for development, as the research work dealt with a systematic vision based on the merging of the results of statistical analysis with the principles adopted in regional divisions, we have identified three regions with different developmental characteristics; the north eastern developmental region, the Constantine development region and the eastern high plains region. The results of the work are shown in a map of development regions were the final outputs of the research paper are prepared.
-
Copyright of Annals of the University of Oradea, Geography Series / Analele Universitatii din Oradea, Seria Geografie is the property of University of Oradea, Department of Geography, Tourism & Territorial Planning and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.
Boubiche D-E, Athmania D, Boubiche S, Homero T-C.
Cybersecurity issues in wireless sensor networks: current challenges and solutions. Wireless Personal Communications [Internet]. 2021;117 :177-213.
Publisher's VersionAbstract
Wireless sensor networks are deployed without predefined infrastructure and are generally left unattended. Indeed, the vulnerability of the wireless sensor networks to attacks comes principally from their inherent characteristics. As the data are transmitted over the air, it is very easy for an adversary to spy on traffic. Also, to meet the strict budgetary requirements, the sensor nodes tend to not be tamperproof and thus offer no protection against security attacks. Alongside with these vulnerabilities, the human intervention is always not allowed to deal with adversaries who attempt to compromise the network. Therefore, security systems are mainly needed to secure the network and ensure the protection against security threats. Indeed, cryptographic based systems are generally used to ensure security. However, due to the lack of memory and power (low computing, limited energy reserves) of the sensor nodes, most of these approaches are not suitable. Therefore, providing security while respecting the specific constraints of the sensors, represents one of the most important research issue in wireless sensor networks. Indeed, several studies have been conducted these last decades to propose lightweight and efficient security protocols for wireless sensor networks. In this paper, we review the most leading protocols and classify them based the addressed security issue. Also, we outline the main security constraints and challenges and present the future research directions based on the emerged application fields.
Boubiche D-E, Athmania D, Boubiche S, Homero T-C.
Cybersecurity issues in wireless sensor networks: current challenges and solutions. Wireless Personal Communications [Internet]. 2021;117 :177-213.
Publisher's VersionAbstract
Wireless sensor networks are deployed without predefined infrastructure and are generally left unattended. Indeed, the vulnerability of the wireless sensor networks to attacks comes principally from their inherent characteristics. As the data are transmitted over the air, it is very easy for an adversary to spy on traffic. Also, to meet the strict budgetary requirements, the sensor nodes tend to not be tamperproof and thus offer no protection against security attacks. Alongside with these vulnerabilities, the human intervention is always not allowed to deal with adversaries who attempt to compromise the network. Therefore, security systems are mainly needed to secure the network and ensure the protection against security threats. Indeed, cryptographic based systems are generally used to ensure security. However, due to the lack of memory and power (low computing, limited energy reserves) of the sensor nodes, most of these approaches are not suitable. Therefore, providing security while respecting the specific constraints of the sensors, represents one of the most important research issue in wireless sensor networks. Indeed, several studies have been conducted these last decades to propose lightweight and efficient security protocols for wireless sensor networks. In this paper, we review the most leading protocols and classify them based the addressed security issue. Also, we outline the main security constraints and challenges and present the future research directions based on the emerged application fields.
Boubiche D-E, Athmania D, Boubiche S, Homero T-C.
Cybersecurity issues in wireless sensor networks: current challenges and solutions. Wireless Personal Communications [Internet]. 2021;117 :177-213.
Publisher's VersionAbstract
Wireless sensor networks are deployed without predefined infrastructure and are generally left unattended. Indeed, the vulnerability of the wireless sensor networks to attacks comes principally from their inherent characteristics. As the data are transmitted over the air, it is very easy for an adversary to spy on traffic. Also, to meet the strict budgetary requirements, the sensor nodes tend to not be tamperproof and thus offer no protection against security attacks. Alongside with these vulnerabilities, the human intervention is always not allowed to deal with adversaries who attempt to compromise the network. Therefore, security systems are mainly needed to secure the network and ensure the protection against security threats. Indeed, cryptographic based systems are generally used to ensure security. However, due to the lack of memory and power (low computing, limited energy reserves) of the sensor nodes, most of these approaches are not suitable. Therefore, providing security while respecting the specific constraints of the sensors, represents one of the most important research issue in wireless sensor networks. Indeed, several studies have been conducted these last decades to propose lightweight and efficient security protocols for wireless sensor networks. In this paper, we review the most leading protocols and classify them based the addressed security issue. Also, we outline the main security constraints and challenges and present the future research directions based on the emerged application fields.
Boubiche D-E, Athmania D, Boubiche S, Homero T-C.
Cybersecurity issues in wireless sensor networks: current challenges and solutions. Wireless Personal Communications [Internet]. 2021;117 :177-213.
Publisher's VersionAbstract
Wireless sensor networks are deployed without predefined infrastructure and are generally left unattended. Indeed, the vulnerability of the wireless sensor networks to attacks comes principally from their inherent characteristics. As the data are transmitted over the air, it is very easy for an adversary to spy on traffic. Also, to meet the strict budgetary requirements, the sensor nodes tend to not be tamperproof and thus offer no protection against security attacks. Alongside with these vulnerabilities, the human intervention is always not allowed to deal with adversaries who attempt to compromise the network. Therefore, security systems are mainly needed to secure the network and ensure the protection against security threats. Indeed, cryptographic based systems are generally used to ensure security. However, due to the lack of memory and power (low computing, limited energy reserves) of the sensor nodes, most of these approaches are not suitable. Therefore, providing security while respecting the specific constraints of the sensors, represents one of the most important research issue in wireless sensor networks. Indeed, several studies have been conducted these last decades to propose lightweight and efficient security protocols for wireless sensor networks. In this paper, we review the most leading protocols and classify them based the addressed security issue. Also, we outline the main security constraints and challenges and present the future research directions based on the emerged application fields.
Mohammed AS, Smail R.
A decision loop for situation risk assessment under uncertainty: A case study of a gas facility. Petroleum [Internet]. 2021;7 (3) :343-348.
Publisher's VersionAbstract
This paper presents a decision-making support system for situation risk assessment associated with critical alarms conditions in a gas facility. The system provides a human operator with advice on the confirmation and classification of occurred alarm. The input of the system comprises uncertain and incomplete information. In the light of uncertain and incomplete information, different uncertainties laws have been associated with the probabilistic assessment of the system loops which combine data of several sources to reach the ultimate classification. The implemented model used Observe-Orient-Decide-Act loop (OODA) combined with Bayesian networks. Results show that the system can classify the alarms system.
Mohammed AS, Smail R.
A decision loop for situation risk assessment under uncertainty: A case study of a gas facility. Petroleum [Internet]. 2021;7 (3) :343-348.
Publisher's VersionAbstract
This paper presents a decision-making support system for situation risk assessment associated with critical alarms conditions in a gas facility. The system provides a human operator with advice on the confirmation and classification of occurred alarm. The input of the system comprises uncertain and incomplete information. In the light of uncertain and incomplete information, different uncertainties laws have been associated with the probabilistic assessment of the system loops which combine data of several sources to reach the ultimate classification. The implemented model used Observe-Orient-Decide-Act loop (OODA) combined with Bayesian networks. Results show that the system can classify the alarms system.
Sebti R, Zroug S, KAHLOUL L, BENHARZALLAH S.
A deep learning approach for the diabetic retinopathy detection. The Proceedings of the International Conference on Smart City Applications [Internet]. 2021 :459-469.
Publisher's VersionAbstractDiabetic retinopathy is a severe retinal disease that can blur or distort the vision of the patient. It is one of the leading causes of blindness. Early detection of diabetic retinopathy can significantly help in the treatment. The recent development in the field of AI and especially Deep learning provides ambitious solutions that can be exploited to predict, forecast and diagnose several diseases in their early phases. This work aims towards finding an automatic way to classify a given set of retina images in order to detect the diabetic retinopathy. Deep learning concepts have been used with a convolutional neural network (CNN) algorithm to build a multi-classification model that can detect and classify disease levels automatically. In this study, a CNN architecture has been applied with several parameters on a dataset of diabetic retinopathy with different structures. At the current stage of this work, obtained results are highly encouraging.
Sebti R, Zroug S, KAHLOUL L, BENHARZALLAH S.
A deep learning approach for the diabetic retinopathy detection. The Proceedings of the International Conference on Smart City Applications [Internet]. 2021 :459-469.
Publisher's VersionAbstractDiabetic retinopathy is a severe retinal disease that can blur or distort the vision of the patient. It is one of the leading causes of blindness. Early detection of diabetic retinopathy can significantly help in the treatment. The recent development in the field of AI and especially Deep learning provides ambitious solutions that can be exploited to predict, forecast and diagnose several diseases in their early phases. This work aims towards finding an automatic way to classify a given set of retina images in order to detect the diabetic retinopathy. Deep learning concepts have been used with a convolutional neural network (CNN) algorithm to build a multi-classification model that can detect and classify disease levels automatically. In this study, a CNN architecture has been applied with several parameters on a dataset of diabetic retinopathy with different structures. At the current stage of this work, obtained results are highly encouraging.
Sebti R, Zroug S, KAHLOUL L, BENHARZALLAH S.
A deep learning approach for the diabetic retinopathy detection. The Proceedings of the International Conference on Smart City Applications [Internet]. 2021 :459-469.
Publisher's VersionAbstractDiabetic retinopathy is a severe retinal disease that can blur or distort the vision of the patient. It is one of the leading causes of blindness. Early detection of diabetic retinopathy can significantly help in the treatment. The recent development in the field of AI and especially Deep learning provides ambitious solutions that can be exploited to predict, forecast and diagnose several diseases in their early phases. This work aims towards finding an automatic way to classify a given set of retina images in order to detect the diabetic retinopathy. Deep learning concepts have been used with a convolutional neural network (CNN) algorithm to build a multi-classification model that can detect and classify disease levels automatically. In this study, a CNN architecture has been applied with several parameters on a dataset of diabetic retinopathy with different structures. At the current stage of this work, obtained results are highly encouraging.
Sebti R, Zroug S, KAHLOUL L, BENHARZALLAH S.
A deep learning approach for the diabetic retinopathy detection. The Proceedings of the International Conference on Smart City Applications [Internet]. 2021 :459-469.
Publisher's VersionAbstractDiabetic retinopathy is a severe retinal disease that can blur or distort the vision of the patient. It is one of the leading causes of blindness. Early detection of diabetic retinopathy can significantly help in the treatment. The recent development in the field of AI and especially Deep learning provides ambitious solutions that can be exploited to predict, forecast and diagnose several diseases in their early phases. This work aims towards finding an automatic way to classify a given set of retina images in order to detect the diabetic retinopathy. Deep learning concepts have been used with a convolutional neural network (CNN) algorithm to build a multi-classification model that can detect and classify disease levels automatically. In this study, a CNN architecture has been applied with several parameters on a dataset of diabetic retinopathy with different structures. At the current stage of this work, obtained results are highly encouraging.
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M.
A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean EngineeringOcean Engineering [Internet]. 2021;221 :108525.
Publisher's VersionAbstract
In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M.
A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean EngineeringOcean Engineering [Internet]. 2021;221 :108525.
Publisher's VersionAbstract
In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.