Publications

2025
Noui Z, Si-Ameur M, Ibrahim A, Al-Tarabsheh A, Djebara A, Fazlizan A, Ludin N-A, Bessanane N, Azeez H-L, Ud din SI. Advanced thermo-hydraulic analysis of wavy mini-channel heat sinks for enhanced photovoltaic cooling applications. Case Studies in Thermal Engineering [Internet]. 2025;72. Publisher's VersionAbstract

This research conducts a comprehensive numerical evaluation into an advanced heat dissipation system for low-concentrated photovoltaic systems, addressing the limitations of conventional minichannel heat sink designs. To overcome their inherent inefficiencies, a novel minichannel configuration with wavy surfaces and a trapezoidal inlet section (TWMC) is proposed, aiming to enhance convective heat transfer through increased surface area and induced flow turbulence. Three configurations wavy minichannel (TWMC), trapezoidal minichannel (TMC), and rectangular minichannel (RMC) are systematically compared in terms of key performance metrics, including thermal resistance, Nusselt number, pressure loss, and friction index. Water serves as the coolant, operating in a laminar flow regime (Re = 200–900) and absorbing a uniform heat flux of 100 kW/m2 applied to the channel base. Results demonstrate that the TWMC configuration outperforms conventional designs, achieving a 30.82 % decline in heat resistance and a 9.2 % surge in Nusselt number at peak Reynolds numbers. The TWMC design improves the performance evaluation criterion (PEC) to 1.06, with exceptional overall thermohydraulic performance PEC(R) ranging from 1.078 to 1.271, despite higher pressure drop. These findings offer insights into optimizing CPV system performance, emphasizing the potential of innovative wavy-channel geometries to revolutionize thermal management and energy efficiency in advanced photovoltaic applications.

Noui Z, Si-Ameur M, Bessanane N, Djebara A, Ibrahim A, Aziat Bin Ishak M-A, Ajeel RK, Sham Dol S. Comparative study of thermohydraulic performance in mini-channel heat sink systems: Multi-objective optimization and exergy considerations . Case Studies in Thermal Engineering [Internet]. 2025;66. Publisher's VersionAbstract

A numerical investigation is undertaken, employing a 3D conjugated heat transfer model to examine the impact of geometric configurations and hydrodynamical parameters on the overall thermal resistance and pumping power in mini-channels heat sinks. The aim lies in its holistic approach, integrating the non-uniform section of the mini-channel, the impact of the inlet velocity, the energy and exergy analysis, multi-objective optimization and performance evaluation criteria (PEC) evaluations, and the consideration of metal Galinstan and Cu-water nanofluid working fluids. The parametric analysis highlighted metal Galinstan as the best coolant for the five configurations involved in the present study. Furthermore, The PEC results indicate that the best performance is achieved by the Converged-Diverged Mini-channel (CDMC)heat sink. CDMC configuration with metal Galinstan performs well in terms of exergy evaluations and shows a better average temperature distribution with a maximum temperature of about 328K. The optimal inlet velocity (Uin = 0.21 m/s) is determined on the basis of the pumping power and thermal resistance profiles. The optimization process is based on the impact of the mini-channel's maximum width on the PEC. It is shown that the PEC increases with the maximum width of the CDMC and the highest (PEC = 1.31) is obtained at a maximum width of 0.95 mm.

Boudraa A, Rahal Gharbi ME-hadi. L’écriture Au Primaire : Accompagner Les élèves De Troisième Année Dans Un Contexte Plurilingue. Afak des Sciences [Internet]. 2025;10 (2) :697-708. Publisher's VersionAbstract

L'écriture est une compétence fondamentale au cours de la scolarité primaire, permettant non seulement de communiquer des idées, mais aussi de développer la créativité des élèves. Cet article examine l’importance de l’enseignement de l’écriture aux élèves du primaire dans un contexte plurilingue. Nous proposerons des outils et des méthodes qui favorisent une écriture authentique et confiante.

Hadji O, Maimour M, Benyahia A, KADRI O, Rondeau E. EcoWatch: Region of interest-based multi-quantization resource-efficient framework for migratory bird surveillance using wireless sensor networks and environmental context awareness. Computers and Electrical Engineering [Internet]. 2025;123. Publisher's VersionAbstract

Global sustainability initiatives increasingly rely on innovative technologies to safeguard biodiversity and mitigate environmental impacts. In this paper, we present EcoWatch, a novel framework that leverages Wireless Multimedia Sensor Networks (WMSNs) using LoRaWAN technology for efficient data transmission to enable real-time bird species detection and counting in their natural habitat. EcoWatch combines YOLOv8 You Only Look Once for object detection and Learning to Count Everything (LTCE) for precise object counting at the base station. To address the inherent limitations of WSNs in terms of energy and bandwidth, EcoWatch incorporates a multi-level ROI-based video compression technique. Extensive evaluation demonstrates that EcoWatch significantly reduces energy consumption (up to 58.7%) and data transmission load (by 69.8%) compared to other methods while maintaining acceptable image quality, detection and counting accuracy. Notably, EcoWatch exhibits robust performance across seasons and adapts well to varying environmental conditions, making it a promising solution for real-world ecological monitoring applications.

Azizi N, Ben-Othmane M, Hamouma M, Siam A, Haouassi H, Ledmi M, Hamdi-Cherif A. BiCSA-PUL: binary crow search algorithm for enhancing positive and unlabeled learning. International Journal of Information Technology [Internet]. 2025;17 :1729–1743. Publisher's VersionAbstract
This paper presents a novel metaheuristic binary crow search algorithm (CSA) designed for positive-unlabeled (PU) learning, a paradigm where only positive and unlabeled data are available, with applications in many diversified fields, such as medical diagnosis and fraud detection. The algorithm represent a useful adaptation of CSA, itself inspired by the food-hiding behavior of crows. The proposed BiCSA-PUL (binary crow search algorithm for positive-unlabeled learning) selects reliable negative samples from unlabeled data using binary vectors, and updates positions employing Hamming distance, guided by a modified F1-score, as fitness function. The algorithm was tested on 30 samples from 10 diverse datasets, outperforming seven state-of-the-art PU learning methods. The results reveal that BiCSA-PUL provides a robust and efficient approach for PU learning, significantly improving fitness and reliability. This work opens new avenues for applying metaheuristic optimization methods to challenging classification problems with limited labeled data. The main limitations are the potentially time-intensive process of parameters tuning and reliance on initial sampling.
BENBOUTA S, OUTTAS T, FERROUDJI F. Modal Dynamic Response of a Darreius Wind Turbine Rotor with NACA0018 Blade Profile. Engineering, Technology & Applied Science Research [Internet]. 2025;15 (2) :20863-20870. Publisher's VersionAbstract

The global wind energy industry achieved a significant milestone by reaching a total capacity of one terawatt (TW) by the end of 2023, underscoring the increasing importance of wind energy as a sustainable energy source (Global Wind Energy Outlook, 2022). This study focuses on the simulation and dynamic analysis of an H-Darrieus wind turbine rotor using 3D Finite Element Analysis (FEA). Key structural parameters, including natural frequencies, associated vibration modes, and mass participation rates, were determined to optimize the rotor performance. A novel blade design is proposed in this work, offering a lighter and more robust alternative to traditional rotor blades manufactured from composites, like fiberglass-polyester, fiberglass-epoxy, or combinations with wood and carbon. The lighter design enhances the startup performance at low wind speeds, while the improved strength and fixing mechanisms ensure resilience against the increasingly severe sandstorms reported in recent years. The vibration dynamics of the rotor under critical wind loads were analyzed using the SolidWorks Simulation software, yielding highly satisfactory results. The stability and reliability of the rotor were validated, as the dynamic performance indices, and the quality criteria meet the requirements for optimal operation.

Chichoune R, Mokhtari Z, Saibi K. Weighted variable Besov space associated with operators. Rendiconti del Circolo Matematico di Palermo Series 2 [Internet]. 2025;74 (26). Publisher's VersionAbstract

Let (X,d,μ) be a space of homogeneous type and L be a nonnegative self-adjoint operator on L2(X) whose heat kernels satisfy Gaussian upper bounds. In this article, we introduce the weighted variable Besov space associated with the operator L and demonstrate that Peetre maximal functions can be used to characterize this space. Furthermore, we provide a detailed study of its atomic decompositions.

2024
Aouiche D, Lahbari N, Belhadj M. Numerical analysis of extended end-plate connections under dynamic loading. Electronic Journal of Structural Engineering [Internet]. 2024. Publisher's VersionAbstract

An experimental investigation was conducted at Delft University of Technology to examine the behavior of eight statically loaded extended end plate moment connections up to collapse. The parameters investigated were the end plate thickness (10 mm, 15 mm, and 20 mm) and steel grade of the end plate (S355, S690). While the study was limited to a static test, this investigation intends to analyze the dynamic behavior of the research specimens (FS1 to FS4) using finite element methods. The multi-purpose software Abaqus was used to develop the 3D model. The mechanical properties of these connections, including strength, ductility, and energy dissipation capacity, are examined. The cyclic loading is applied according to the JGJ 101-96 standard specification. The finite element model was validated against experimental tests for both static and dynamic conditions, successfully reproducing moment-rotation curves and simulating ductile damage as well. The results indicate that increased plate thickness corresponds to improved stiffness and strength, while the use of higher steel grades introduces a delayed yield point and may reduce ductility, which must be balanced to optimize performance considering specific design requirements and loading conditions. Our findings align with previous findings and underscore the need for a better understanding of joint behavior under dynamic loading for seismic design since the strain rate at which load is applied significantly affects the material properties, which can significantly affect the performance of blast-resistant structures.

Aouiche D, Lahbari N, Belhadj M. Numerical analysis of extended end-plate connections under dynamic loading. Electronic Journal of Structural Engineering [Internet]. 2024. Publisher's VersionAbstract

An experimental investigation was conducted at Delft University of Technology to examine the behavior of eight statically loaded extended end plate moment connections up to collapse. The parameters investigated were the end plate thickness (10 mm, 15 mm, and 20 mm) and steel grade of the end plate (S355, S690). While the study was limited to a static test, this investigation intends to analyze the dynamic behavior of the research specimens (FS1 to FS4) using finite element methods. The multi-purpose software Abaqus was used to develop the 3D model. The mechanical properties of these connections, including strength, ductility, and energy dissipation capacity, are examined. The cyclic loading is applied according to the JGJ 101-96 standard specification. The finite element model was validated against experimental tests for both static and dynamic conditions, successfully reproducing moment-rotation curves and simulating ductile damage as well. The results indicate that increased plate thickness corresponds to improved stiffness and strength, while the use of higher steel grades introduces a delayed yield point and may reduce ductility, which must be balanced to optimize performance considering specific design requirements and loading conditions. Our findings align with previous findings and underscore the need for a better understanding of joint behavior under dynamic loading for seismic design since the strain rate at which load is applied significantly affects the material properties, which can significantly affect the performance of blast-resistant structures.

Hamidane R, Mouss L-H, Mahdaoui R, Bentrcia T. Designand Assessment of an IndustrialMaintenanceAssistanceSystemBasedon MixedReality. Revue d'Intelligence Artificielle [Internet]. 2024;38 (3) :867-876. Publisher's VersionAbstract

Maintenance, storage and warehousing are complex processes required in many industries such as automotive, aerospace, manufacturing and logistic companies. These processes, often, involve moving objects in crowded environments using robots or human operators. Particularly, replacement and assembly of machine parts in crowded environments when performed by a human being require high technical skills. These tasks may be performed using robots to reduce costs due to human errors and execution time. However, robots under open world assumptions could neither operate in all environments nor perform tasks not modeled by the designer. In this paper, we introduce a mixed reality system to assist human operators in moving objects in crowded environments for maintenance tasks such as: parts assembly or replacement, and storage of objects. The introduced system consists of a mobile application exploited through a hands-free VR box. The proposed Mixed Reality for Industrial Maintenance (MRIM) system enhances the perception of a human operator by overlaying 3D real world visual information and virtual objects, such as: orientation guidelines including rotating angles, moving direction and displacement of carried objects. These guidelines allow for gaining execution time, and reducing human errors that might cause industrial parts damage. The proposed work brings two main contributions. First, it makes use of a new algorithm based on recasting, named R star (R*) that allows for optimizing pathfinding in 3D space. This later outperforms the two commonly used baseline 3D pathfinding algorithms of at least 87.5% in terms of execution time. Second, MRIM provides an easy-to-use interface that exploits information provided by the R* algorithm. The experiments, conducted in real condition for the task of part replacement in a crowded environment, show that MRIM reduces considerably execution time and human errors.

Benamor S, Messaid B, Berghout A. Estimation and mapping of soil erosion using the RUSLE model and GIS tools: a case study of the Wad El Hai watershed in the western Aurès, northeastern Algeria. Bulletin of the Serbian Geographical Society [Internet]. 2024. Publisher's VersionAbstract

Soil erosion is the main cause of siltation in dams, on the one hand, and it is one of the main causes of degradation of the agro-pedological heritage, on the other hand. In this context, this work aims to quantify the eroded soils and their spatial distribution in the watershed of Wadi El-Hai (Aurès, Algeria), reaching the Fontaines des Gazelles dam located at the outlet of this basin. The work focuses on mapping and analyzing various thematic maps representing the key erosion factors, linking the Revised Universal Soil Loss Equation (RUSLE), with the goal of producing a synthesis map providing a quantitative spatial representation of the extent of the phenomenon in the watershed. From this map, we can confirm that the erosion phenomenon affects the entire watershed of Wad El Hai. The most severe erosion, affecting 11.60 % of the expansive territory at rates exceeding 33.6 tons per year per hectare, is predominantly concentrated in mountainous regions marked by exceptionally steep slopes. Conversely, the majority, accounting for 64.23% of the entire expanse, is situated in the plains, where erosion rates are comparatively lower at 6.7 tons per hectare per year. The assessment of potential water erosion yields disconcerting outcomes, projecting an average annual loss rate of 15.38 tons per hectare throughout the entire catchment area. The results presented in this study will serve as a vital resource and a decision-making tool, supporting the management and preservation of natural resources by policymakers and stakeholders.

Benatmane K, Mahamdi R, Touafek N, Rachedi MY. Cavity Length Effects on Performances of InGnAsP/InPMultiple Quantum Well Laser Diode. nternational Journal ofINTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING [Internet]. 2024;12 (4) :4777 -4781. Publisher's VersionAbstract

Software has been developed using the MATLAB language to analyze laser diode having the architecture InGaAsP/InP .The cavity length of active region of multi quantum well semiconductor laser effect on threshold current, quantum efficiency and optical output power of InGaAsP/InP and separate confinement heterostructure (SCH) is investigated. High-speed communication systems, especially those that use optical fiber communication for high-speed data transmission, use lasers with a wavelength of 1.55 μm. here, the performance of changing the cavity length values of active region between 250 to 500 μm at room temperature is study in this work. The characteristics power–current (P–I)and related features, threshold current and slope efficiency have been investigated. The threshold current decreases with increase of cavity lengths because the carrier density in the quantum well is very high. This effect is particularly pronounced in the shortest cavity measured (250μm), we extractIth=6.25ma,αi=30mA and ηd=63%. These modifications show that our proposed structure is better compared to the GaInP/GaAs 5QW laser structure (Ith=360mA and ηd=51%).

Kenisse N, Masmoudi M, KANIT T, Ounissi O, Djebara Y, Kaddouri W. Evaluation of the Relevance of Global and By-Step Homogenization for Composites and Heterogeneous Materials at Several Scales. Applied Sciences [Internet]. 2024;14 (16). Publisher's VersionAbstract

Two hypotheses divide experts on determining the effective properties of composite materials using multi–scale homogenization methods. The first hypothesis states that multi-scale homogenization methods can ensure the direct determination of effective properties, at the macro level, of composite materials from a single representation of the medium at the lowest possible scale that allows for a good representation of all heterogeneities. The second hypothesis states that the determination cannot be ensured directly from a single scale but rather through multistep homogenization where each step represents the medium at a different scale from the lowest to the macroscale. To answer this question, a rigorous study is carried out; it includes calculating the two effective elastic properties, bulk, and shear moduli of three phases of a multi–layered sphere composite model by studying three phases. A multistep homogenization method is used to determine the effective properties of the composite and the obtained results are compared with those of the direct homogenization. Two different studies are considered: the first is based on an analytical model and the second on the numerical homogenization based on finite element calculation. To consider the effect of some influential parameters, several situations are treated by the combination of the variation of the volume fractions of the three phases and their property contrasts. The analytical calculations are performed using the Python 3.10 commercial software. It could be concluded that the effective elastic properties obtained either by the multistep or by the direct homogenization show no significant difference.

Nacer I, Kadri AE. The Analysis Of The Non-verbal Communication Of A Physical Education Teachers For Secondary School During The Preparatory Stage (warm-up) Of The P.e Session. The Challange [Internet]. 2024;16 (1) :242-260. Publisher's VersionAbstract

The study aimed at analyzing the non- verbal behaviors of secondary school teachers of P.E physical education and sport during the preparatory session. The two researchers have used the descriptive analytical method, through regular observation of the teaching behavior between the teacher and the student .The sample of the study was 8 teachers who were selected in an intentional way, by using the observation grid as a tool of study. The study concluded that the teacher’s non- verbal behaviors, differ according to their experiences, while the type of sports activity being taught to students has no effect on the form of the non-verbal behaviors of the teachers.

Ferah S. Malek Bennabi (1905-1973) Au Xxie Siècle (une Revue De Littérature). ALTRALANG Journal [Internet]. 2024;6 (2) :223-240. Publisher's VersionAbstract

La présente étude s’intéresse à la littérature scientifique qui s’est faite autour du penseur algérien Malek Bennabi (1905-1973) en ce début du 21e siècle. Son objectif est de vérifier l’authenticité du prétendu retour de la pensée bennabienne sur la scène académique et intellectuelle, ainsi que de mesurer le degré d’intérêt que les chercheurs lui portent à travers le monde, notamment en Algérie avec l’apparition de plusieurs inédits pendant cette même période. Pour cela, un état des lieux a été entrepris, en posant comme cadre chronologique la période qui va de l’an 2000 jusqu’à 2022. Le recensement des données bibliographiques, illustré par des tableaux et des représentations graphiques, s’est fait selon plusieurs plans : le nombre ainsi que les nationalités des chercheurs, les pays depuis lesquels les travaux ont été publiés, les types de documents (livres, thèses, conférences, etc.), les catégories de ces travaux (sociologie, économie, religion, etc.) ainsi que les langues dans lesquelles ils ont été exprimés. Les résultats de cette étude révèlent un phénomène de pluralité, voire de cosmopolitisme, et un taux de publication croissant au cours des années.

Ferah S. Malek Bennabi (1905-1973) Au Xxie Siècle (une Revue De Littérature). ALTRALANG Journal [Internet]. 2024;6 (2) :223-240. Publisher's VersionAbstract

La présente étude s’intéresse à la littérature scientifique qui s’est faite autour du penseur algérien Malek Bennabi (1905-1973) en ce début du 21e siècle. Son objectif est de vérifier l’authenticité du prétendu retour de la pensée bennabienne sur la scène académique et intellectuelle, ainsi que de mesurer le degré d’intérêt que les chercheurs lui portent à travers le monde, notamment en Algérie avec l’apparition de plusieurs inédits pendant cette même période. Pour cela, un état des lieux a été entrepris, en posant comme cadre chronologique la période qui va de l’an 2000 jusqu’à 2022. Le recensement des données bibliographiques, illustré par des tableaux et des représentations graphiques, s’est fait selon plusieurs plans : le nombre ainsi que les nationalités des chercheurs, les pays depuis lesquels les travaux ont été publiés, les types de documents (livres, thèses, conférences, etc.), les catégories de ces travaux (sociologie, économie, religion, etc.) ainsi que les langues dans lesquelles ils ont été exprimés. Les résultats de cette étude révèlent un phénomène de pluralité, voire de cosmopolitisme, et un taux de publication croissant au cours des années.

Abbas S, Haddad L, Zeraib S. Mapping of multidimensional local development in the region of Hodna: the province of M’sila (Algeria). GeoJournal [Internet]. 2024;89 (93). Publisher's VersionAbstract

The targeted resorption of socio-economic deficits at the local (municipal) level requires the use of a cartography of development in the multidimensional sense of the term, combined with that of the causes structural factors of its possible delay. This article provides for this purpose a municipal cartography of the development of M’sila province, and its sources assimilated to education, standard of living, economic activity, housing and social services. To ensure a certain objectivity in our research, we have chosen an automatic technique following the essential steps (choice of variables, normalization, weighting and aggregation) in the hierarchical classification of municipalities. This mapping of multidimensional local development clearly shows the development deficits at the municipal level, due to the delays accumulated for years, despite the generalization of basic education and attempt the local authorities to improve the economic and social conditions of the population. The results obtained show that on the whole, the urban municipalities have a local development index higher than 0.7 and rank in the first places, this index goes from a minimum (0.310) observed in the rural municipalities Tamsa, Zerzour, Sidi M’hammed and the ones located south of the province where the climate is dry and hot, the maximum index (0.860) recorded in two urban municipalities at namely M’sila and Bousaada, The high variability of development deficits shows that any development strategy would benefit from being rethought in order to provide more effective to the different situations experienced by rural municipalities in particular.

Culture And Reasoning In Arabic Discourse: A Contrastive Analysis Of Rhetorical Patterns In Algerian AcademiaPage de garde, sommaire et éditorial. El-Ryssala Journal for Studies and Researches in Humanities [Internet]. 2024;9 (4) : 41-49. Publisher's VersionAbstract

In an increasingly interconnected world, the intricacies of cross-cultural communication and language acquisition are of a crucial importance. Contrastive Rhetoric theory offers valuable insights into how rhetorical patterns are transferred from L1 to L2. While previous studies acknowledge the influence of culture on rhetoric, they often overlook the reasoning mechanisms shaping rhetorical choices. The present research addresses this gap within the context of Arabic discourse, focusing on Algerian academic corpus, by shifting the focus from surface cultural manifestations to the fundamental reasoning embedded within Arab culture. This study contributes to a deeper understanding of how major Arabic rhetorical patterns, including paraphrase, lexical couplets, and parallelism, are transferred to English compositions by Algerian students.

Yahiaoui K, Bouam S, Gueroui A. Enhancing Wheat Fire Prediction in Barika, Algeria, through Advanced Ensemble Machine Learning Models. Journal of Electrical Systems [Internet]. 2024;(20) :10. Publisher's VersionAbstract

Recent climatic shifts and the growth of agricultural land have escalated the incidence of wheat field fires, presenting severe risks to both food security and local economies. This study aims to develop advanced predictive models to effectively forecast significant wheat fires in Barika, Algeria. We utilized a comprehensive dataset spanning from 2015 to 2023, which includes information on fire incidents and meteorological factors like temperature, humidity, precipitation, and wind speed. A sophisticated ensemble machine learning model was crafted, combining Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Random Forest (RF) in a stacked configuration to predict wheat fire events. Our analysis indicates that the ensemble model significantly outperforms traditional single-model approaches in terms of both accuracy and reliability. Employing these cutting-edge predictive techniques significantly bolsters firefighting measures, enhances resource management, and reduces the adverse effects of fires in agricultural zones. The employment of ensemble learning highlights its utility as a formidable tool in environmental management and crisis response. With more precise forecasts, this model facilitates improved emergency preparedness and strategic intervention plans, aiming to safeguard essential agricultural assets and support rural communities against the backdrop of mounting environmental pressures.

Makhlouf S, Lombarkia F. A New Generalization of Fuglede's Theorem and Operator Equations. Nonlinear Dynamics & Systems Theory [Internet]. 2024;24 (6) :603-614. Publisher's VersionAbstract

The article focuses on the generalization of Fuglede's theorem and the solvability of operator equations. Topics include extending Fuglede's theorem to non-normal operators, deriving criteria for solving operator equations such as AX − XB = C, and using inner inverses to establish necessary and sufficient conditions for operator equation solutions.

Pages