Publications by Type: Journal Article

In Press
Hammadi A, Brinis N, Djidel M. Hydrodynamic Characteristics of the “Complex Terminal” aquifer in the Region of Oued Righ North (Algerian Sahara). Algerian Journal of Environmental Science and Technology [Internet]. In Press. Publisher's VersionAbstract
Accessibility of fresh water, the nature’s gift wheels the foremost part of the world economy. The sufficient supplies of water are essential for agriculture, human intake, industry as well as regeneration. The Oued Righ region is located in Algeria’s South-East, specifically in the NorthEast of the Sahara, on the Northern edge of the Grand Erg Oriental and the Southern border of the Aures massif. This area appears as a lower Sahara synclinal basin and is part of a broad North-South trending ditch. It is famous for its date palms, the development of the date culture in this region is attributed not only to the population’s efforts, but above all to the particular climatic conditions, the favorable soil characteristics and the existence of significant groundwater. The aim of this study is to understand the results obtained from using different approaches of water hydrodynamics in the Complex Terminal aquifer. The aquifer’s hydrodynamic characterization was carried out using hydrodynamic parameters and piezometry. As a result, the transmissivity and permeability obtained data using traditional Cooper-Jacob method showed that the flow capacities of the aquifer environment and the productivities of the structures are important in the studied zone where, the highest value of transmissivity equal 2.36× 102-m 2 /sis found in the central part of the study area in El-Meghair. The establishment of piezometric maps reveals a flow direction oriented toward the chott.
Benfarhi F, MENANI M-R. Risk assessment ofirrigation with water contaminated by trace metals (Cd, Cr, Pb and Zn) on the soil-plant complex in the ElMadher plain (Batna, north-east Algeria). Journal of Water and Land Development. In Press.
Submitted
Fetha C. Analysis of Essential index on Electric Energy Quality In the case of Voltage Dips and Interruptions. “POLITEHNICA” . Submitted :57.
Fetha C, Chikhi K, Dekhinet A. Analysis of Unsymmetrical Voltage Criterion Effect on Electrical Energy Quality. Submitted.
MENNOUNI ABDELAZIZ, Ramdani NE. A Computational Method for Solving Skew-Hermitian Integral Equations of the Second Kind. Local Organizing Committee. Submitted :136.
Dekhinet A, Fetha C, Chikhi K. DESIGN OF THE LINEAR SWITCHED RELUCTANCE MACHINE. Submitted.
Adjadj F, Bouharkat M, Naceur A. Diagrammes d’équilibre entre phases: des investigations expérimentales à la modélisation. Submitted.
Clabaut M, Adjroud O. Effets utéroactivateur et analgésique d'un inhibiteur d'enképhalinase pendant la période préparturiente. Submitted.
Bouharkat M, Adjadj F. Impacts de la production de l’énergie électrique sur l’environnement. Submitted.
Djebabra M, Bendada L, Bahmed L, Mokrani L. La réaffectation des produits. Submitted.
HAMZI R, Bourmada N, HADDAD D, LONDICHE H. Modelling of Fire-Atmosphere interaction by the finite volume method: Case of NOx life cycle. Submitted.
Kalla H, Girault A, Sorel Y. A new transformation scheme based on active replication strategy that tolerates failures. Submitted.
Hadda H, Dridi N, Hajri-Gabouj S. Nouvelle règle d’élimination pour le problème de flow shop d’assemblage. Submitted.
Belkacem K, Rebiai SE. Output Controllability of Boundary Control Systems. Submitted.
Mennouni A. A QUASI-INTERPOLATION SPLINE FOR CAUCHY INTEGRAL EQUATIONS VIA REGULARIZATION. Submitted.
MENNOUNI ABDELAZIZ. On solving integral equations with logarithmic kernel of the second kind. Submitted.
2023
Elgues A, Menkad S. ON THE CLASS OF n-NORMAL OPERATORS AND MOORE-PENROSE INVERSE. Advances in Mathematics: Scientific Journal [Internet]. 2023;12 (1) :1–16. Publisher's VersionAbstract

Let T ∈ B(H) be a bounded linear operator on a complex Hilbert space H. For n ∈ N, an operator T ∈ B(H) is said to be n-normal if T nT ∗ = T ∗T n. In this paper we investigate a necessary and sufficient condition for the n-normality of ST and T S, where S, T ∈ B(H). As a consequence, we generalize Kaplansky theorem for normal operators to n-normal operators. Also, In this paper, we provide new characterizations of n-normal operators by certain conditions involving powers of Moore-Penrose inverse.

Hessad M-A, Bouchama Z, Benaggoune S, Behih K. Cascade sliding mode maximum power point tracking controller for photovoltaic systems. Electrical Engineering & Electromechanics [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Constant increases in power consumption by both industrial and individual users may cause depletion of fossil fuels and environmental pollution, and hence there is a growing interest in clean and renewable energy resources. Photovoltaic power generation systems are playing an important role as a clean power electricity source in meeting future electricity demands. 

Problem. All photovoltaic systems have two problems; the first one being the very low electric-power generation efficiency, especially under low-irradiation states; the second resides in the interdependence of the amount of the electric power generated by solar arrays and the ever changing weather conditions. Load mismatch can occur under these weather varying conditions such that maximum power is not extracted and delivered to the load. This issue constitutes the so-called maximum power point tracking problem.

 Aim. Many methods have been developed to determine the maximum power point under all conditions. There are various methods, in most of them based on the well-known principle of perturb and observe. In this method, the operating point oscillates at a certain amplitude, no matter whether the maximum power point is reached or not. That is, this oscillation remains even in the steady state after reaching the maximum power point, which leads to power loss. This is an essential drawback of the previous method. In this paper, a cascade sliding mode maximum power point tracking control for a photovoltaic system is proposed to overcome above mentioned problems. 

Methodology. The photovoltaic system is mainly composed of a solar array, DC/DC boost converter, cascade sliding mode controller, and an output load. Two sliding mode control design strategies are joined to construct the proposed controller. The primary sliding mode algorithm is designed for maximum power point searching, i.e., to track the output reference voltage of the solar array. This voltage is used to manipulate the setpoint of the secondary sliding mode controller, which is used via the DC-DC boost converter to achieve maximum power output. 

Results. This novel approach provides a good transient response, a low tracking error and a very fast reaction against the solar radiation and photovoltaic cell temperature variations. The simulation results demonstrate the effectiveness of the proposed approach in the presence of environmental disturbances.

Khatir A, Bouchama Z, Benaggoune S, Zerroug N. Indirect adaptive fuzzy finite time synergetic control for power systems. Electrical Engineering & Electromechanics [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Budget constraints in a world ravenous for electrical power have led utility companies to operate generating stations with full power and sometimes at the limit of stability. In such drastic conditions the occurrence of any contingency or disturbance may lead to a critical situation starting with poorly damped oscillations followed by loss of synchronism and power system instability. In the past decades, the utilization of supplementary excitation control signals for improving power system stability has received much attention. Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp low-frequency oscillations caused by load disturbances or short-circuit faults. Problem. Adaptive power system stabilizers have been proposed to adequately deal with a wide range of operating conditions, but they suffer from the major drawback of requiring parameter model identification, state observation and on-line feedback gain computation. Power systems are nonlinear systems, with configurations and parameters that fluctuate with time that which require a fully nonlinear model and an adaptive control scheme for a practical operating environment. A new nonlinear adaptive fuzzy approach based on synergetic control theory which has been developed for nonlinear power system stabilizers to overcome above mentioned problems.

Aim. Synergetic control theory has been successfully applied in the design of power system stabilizers is a most promising robust control technique relying on the same principle of invariance found in sliding mode control, but without its chattering drawback. In most of its applications, synergetic control law was designed based on an asymptotic stability analysis and the system trajectories evolve to a specified attractor reaching the equilibrium in an infinite time. In this paper an indirect finite time adaptive fuzzy synergetic power system stabilizer for damping local and inter-area modes of oscillations for power systems is presented. 

Methodology. The proposed controller design is based on an adaptive fuzzy control combining a synergetic control theory with a finite-time attractor and Lyapunov synthesis. Enhancing existing adaptive fuzzy synergetic power system stabilizer, where fuzzy systems are used to approximate unknown system dynamics and robust synergetic control for only providing asymptotic stability of the closed-loop system, the proposed technique procures finite time convergence property in the derivation of the continuous synergetic control law. Analytical proofs for finite time convergence are presented confirming that the proposed adaptive scheme can guarantee that system signals are bounded and finite time stability obtained. 

Results. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results are compared to those obtained with a conventional adaptive fuzzy synergetic controller.

Smatti E-M-B, Arar D. Global convergence towards statistical independence for noisy mixtures of stationary and non-stationary signals. International Journal of Information Technology [Internet]. 2023;15 :833–843. Publisher's VersionAbstract

This article deals with the problem of blind separation of statistically independent sources from the instantaneous linear model (n × n). When the observation signals are affected by the additive white gaussian noise (AWGN), the implementation of the proposed solution is performed by following three steps. The first step is a whitening process. The second step aims to convert the uncorrelated signals into statistically independent signals. The last step consists in reducing the noise existing in the noisy estimations. The main part of the proposed solution is to determine the adequate rotating angle (θ) that maximizes the kurtosis of the whitened signals. This rotating angle is obtained through the use of optimization techniques by applying a genetic algorithm. The proposed solution has the advantage of not converging to a local maximum, and also the separation method can be easily generalized to converge directly towards the global maximum for the case of several sources. The results obtained by applying many simulations, prove the effectiveness and the performance of the proposed method even in the noisy case and whatever the type of the signals (stationary or non-stationary).

Pages