Arrar S , Jehel S, Saemmer A.
Éducation critique aux médias et à l’information en contexte numérique. In: LES COMPTES RENDUS. OpenEdition Journals ; 2021.
Ameddah H, Mazouz H.
3D Printing Analysis by Powder Bed Printer (PBP) of a Thoracic Aorta Under Simufact Additive. In: Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement. ; 2021. pp. 774-785.
AbstractIn recent decades, vascular surgery has seen the arrival of endovascular techniques for the treatment of vascular diseases such as aortic diseases (aneurysms, dissections, and atherosclerosis). The 3D printing process by addition of material gives an effector of choice to the digital chain, opening the way to the manufacture of shapes and complex geometries, impossible to achieve before with conventional methods. This chapter focuses on the bio-design study of the thoracic aorta in adults. A bio-design protocol was established based on medical imaging, extraction of the shape, and finally, the 3D modeling of the aorta; secondly, a bio-printing method based on 3D printing that could serve as regenerative medicine has been proposed. A simulation of the bio-printing process was carried out under the software Simufact Additive whose purpose is to predict the distortion and residual stress of the printed model. The binder injection printing technique in a Powder Bed Printer (PBP) bed is used. The results obtained are very acceptable compared with the results of the error elements found.
Ameddah H.
Integrated Kinematic Machining Error Compensation for Impeller Rough Tool Paths Programming in a Step-Nc Format Using Neural Network Approach Prediction. In: Artificial Neural Network Applications in Business and Engineering. Vol. 7. ; 2021. pp. 144-170.
AbstractThe most important components used in aerospace, ships, and automobiles are designed with free form surfaces. An impeller is one of the most important components that are difficult to machine because of its twisted blades. This research book is based on the premise that a STEP-NC program can document “generic” manufacturing information for an impeller. This way, a STEP-NC program can be made machine-independent and has an advantage over the conventional G-code-based NC program that is always generated for a specific CNC machine. Rough machining is recognized as the most crucial procedure influencing machining efficiency and is critical for the finishing process. The research work reported in this chapter focuses on introduces a fully STEP-compliant CNC by putting forward an interpolation algorithm for non uniform rational basic spline (NURBS) curve system for rough milling tool paths with an aim to solve the problems of kinematic errors solutions in five axis machine by neural network implementation.
Bouakkar L, Ameddah H, Mazouz H.
A Particle Swarm Optimization-Based Approach for Finding Reliability in a Total Hip Prosthesis. In: Artificial Neural Network Applications in Business and Engineering. Vol. 10. ; 2021. pp. 222-242.
AbstractNowadays, we assist the global extension of reliability optimization problems from the design phase of systems and sub-systems to the design and operational phases, not only of systems and sub-systems, but also of bio functionality design. This chapter investigates the relative performances of particle swarm optimization (PSO) variants when used to find reliability in the total hip prosthesis by finding the maximization of jumping distance (JD) to avoid dislocation and the minimization of system’s stability to offer mobility. Statistical analysis of different cases of head diameters of 22, 28, 36, 40 mm has been conducted to survey the convergence and relative performances of the main PSO variants when applied to solve reliability in the total hip prosthesis.
Ameddah H, Mazouz H.
3D Printing Analysis by Powder Bed Printer (PBP) of a Thoracic Aorta Under Simufact Additive. In: Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement. IGI Global ; 2021. pp. 774-785.
AbstractIn recent decades, vascular surgery has seen the arrival of endovascular techniques for the treatment of vascular diseases such as aortic diseases (aneurysms, dissections, and atherosclerosis). The 3D printing process by addition of material gives an effector of choice to the digital chain, opening the way to the manufacture of shapes and complex geometries, impossible to achieve before with conventional methods. This chapter focuses on the bio-design study of the thoracic aorta in adults. A bio-design protocol was established based on medical imaging, extraction of the shape, and finally, the 3D modeling of the aorta; secondly, a bio-printing method based on 3D printing that could serve as regenerative medicine has been proposed. A simulation of the bio-printing process was carried out under the software Simufact Additive whose purpose is to predict the distortion and residual stress of the printed model. The binder injection printing technique in a Powder Bed Printer (PBP) bed is used. The results obtained are very acceptable compared with the results of the error elements found.
Naima G, Rahi SB.
Design and Optimization of Heterostructure Double Gate Tunneling Field Effect Transistor for Ultra Low Power Circuit and System. In: Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and SolutionsElectrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions. ; 2021. pp. 19-36.
Publisher's VersionAbstract
This chapter focuses on double gate (DG) Tunneling Field Effect Transistor (TFET), having band engineering and high - k dielectrics. The basic structure of TFET device is derived and developed by p-i-n diode, containing two heavily doped degenerated semiconductor “p” and “n” regions and lightly doped intrinsic “i” region, respectively. The chapter explores the idea of high-k dielectric engineering as well as band engineering concept with DG -TFET. TFET is a type of field effect device in which current transport phenomena occur due to quantum tunneling between source and channel. The estimation of device characteristics and performance of TFET is time consuming and costly due to lack of rapid advancement in technology. TFET devices have become the most popular switching device among semiconductor players. The chapter summarizes the obtained results by popular device analysis technique, modeling and simulation of DG -TFET.
Kada B, Kalla H.
A fault-tolerant scheduling algorithm based on checkpointing and redundancy for distributed real-time systems. In: Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing. IGI Global ; 2021. pp. 770-788.
Bouchiba N, Sallem S, Kammoun MBA, CHRIFI-ALAOUI L, Drid S.
Nonlinear Control Strategies of an Autonomous Double Fed Induction Generator Based Wind Energy Conversion Systems. In: Entropy and Exergy in Renewable Energy. IntechOpen ; 2021.
Loubna B, Hacene A, Hammoudi M.
A Particle Swarm Optimization-Based Approach for Finding Reliability in a Total Hip Prosthesis. In: Artificial Neural Network Applications in Business and Engineering. IGI Global ; 2021. pp. 222-242.
Belkacem S, GUEZOULI L.
Robust and Accurate Method for Textual Information Extraction Over Video Frames. In: Advances on Smart and Soft Computing. Springer ; 2021. pp. 119-129.
Sahli Y, Zitouni B, Hocine BM.
Three-Dimensional Numerical Study of Overheating of Two Intermediate Temperature P-AS-SOFC Geometrical Configurations. In: Hydrogen Fuel Cell Technology for Stationary Applications. IGI Global ; 2021. pp. 186-222.
Meraghni S, Benaggoune K, Al Masry Z, Terrissa LS, Devalland C, Zerhouni N.
Towards Digital Twins Driven Breast Cancer Detection. In: Intelligent Computing. Springer ; 2021. pp. 87-99.