Publications by Author: Berghout, Tarek

2023
Berghout T, Benbouzid M, Bentrcia T, Lim W-H, Amirat Y. Federated Learning for Condition Monitoring of Industrial Processes: A Review on Fault Diagnosis Methods, Challenges, and Prospects. Electronics [Internet]. 2023;12 (1). Publisher's VersionAbstract
Condition monitoring (CM) of industrial processes is essential for reducing downtime and increasing productivity through accurate Condition-Based Maintenance (CBM) scheduling. Indeed, advanced intelligent learning systems for Fault Diagnosis (FD) make it possible to effectively isolate and identify the origins of faults. Proven smart industrial infrastructure technology enables FD to be a fully decentralized distributed computing task. To this end, such distribution among different regions/institutions, often subject to so-called data islanding, is limited to privacy, security risks, and industry competition due to the limitation of legal regulations or conflicts of interest. Therefore, Federated Learning (FL) is considered an efficient process of separating data from multiple participants to collaboratively train an intelligent and reliable FD model. As no comprehensive study has been introduced on this subject to date, as far as we know, such a review-based study is urgently needed. Within this scope, our work is devoted to reviewing recent advances in FL applications for process diagnostics, while FD methods, challenges, and future prospects are given special attention.
Berghout T, Mouss M-D, Mouss L‐H, Benbouzid M. ProgNet: A Transferable Deep Network for Aircraft Engine Damage Propagation Prognosis under Real Flight Conditions. Aerospace [Internet]. 2023;10 (1). Publisher's VersionAbstract
Machine learning prognosis for condition monitoring of safety-critical systems, such as aircraft engines, continually faces challenges of data unavailability, complexity, and drift. Consequently, this paper overcomes these challenges by introducing adaptive deep transfer learning methodologies, strengthened with robust feature engineering. Initially, data engineering encompassing: (i) principal component analysis (PCA) dimensionality reduction; (ii) feature selection using correlation analysis; (iii) denoising with empirical Bayesian Cauchy prior wavelets; and (iv) feature scaling is used to obtain the required learning representations. Next, an adaptive deep learning model, namely ProgNet, is trained on a source domain with sufficient degradation trajectories generated from PrognosEase, a run-to-fail data generator for health deterioration analysis. Then, ProgNet is transferred to the target domain of obtained degradation features for fine-tuning. The primary goal is to achieve a higher-level generalization while reducing algorithmic complexity, making experiments reproducible on available commercial computers with quad-core microprocessors. ProgNet is tested on the popular New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset describing real flight scenarios. To the extent we can report, this is the first time that all N-CMAPSS subsets have been fully screened in such an experiment. ProgNet evaluations with numerous metrics, including the well-known CMAPSS scoring function, demonstrate promising performance levels, reaching 234.61 for the entire test set. This is approximately four times better than the results obtained with the compared conventional deep learning models.
2022
Inayat U, Zia M-F, Mahmood S, Berghout T, Benbouzid M. Cybersecurity Enhancement of Smart Grid: Attacks, Methods, and Prospects. Electronics [Internet]. 2022;11 (23). Publisher's VersionAbstract
Smart grid is an emerging system providing many benefits in digitizing the traditional power distribution systems. However, the added benefits of digitization and the use of the Internet of Things (IoT) technologies in smart grids also poses threats to its reliable continuous operation due to cyberattacks. Cyber–physical smart grid systems must be secured against increasing security threats and attacks. The most widely studied attacks in smart grids are false data injection attacks (FDIA), denial of service, distributed denial of service (DDoS), and spoofing attacks. These cyberattacks can jeopardize the smooth operation of a smart grid and result in considerable economic losses, equipment damages, and malicious control. This paper focuses on providing an extensive survey on defense mechanisms that can be used to detect these types of cyberattacks and mitigate the associated risks. The future research directions are also provided in the paper for efficient detection and prevention of such cyberattacks.
Berghout T, Benbouzid M, Ferrag M-A. Deep Learning with Recurrent Expansion for Electricity Theft Detection in Smart Grids. 48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022 [Internet]. 2022. Publisher's VersionAbstract
The increase in electricity theft has become one of the main concerns of power distribution networks. Indeed, electricity theft could not only lead to financial losses, but also leads to reputation damage by reducing the quality of supply. With advanced sensing technologies of metering infrastructures, data collection of electricity consumption enables data-driven methods to emerge in such non-technical loss detections as an alternative to traditional experience-based human-centric approaches. In this context, such fraud prediction problems are generally a thematic of missing patterns, class imbalance, and higher level of cardinality where there are many possibilities that a single feature can assume. Therefore, this article is introduced specifically to solve data representation problem and increase the sparseness between different data classes. As a result, deeper representations than deep learning networks are introduced to repeatedly merge the learning models themselves into a more complex architecture in a sort of recurrent expansion. To verify the effectiveness of the proposed recurrent expansion of deep learning (REDL) approach, a realistic dataset of electricity theft is involved. Consequently, REDL has achieved excellent data mapping results proven by both visualization and numerical metrics and shows the ability of separating different classes with higher performance. Another important REDL feature of outliers correction has been also discovered in this study. Finally, comparison to some recent works also proved superiority of REDL model.
Berghout T, Benbouzid M. Detecting Cyberthreats in Smart Grids Using Small-Scale Machine Learning. ELECTRIMACS 2022 [Internet]. 2022. Publisher's VersionAbstract
Due to advanced monitoring technologies including the plug-in of the cyber and physical layers on the Internet, cyber-physical systems are becoming more vulnerable than ever to cyberthreats leading to possible damage of the system. Consequently, many researchers have devoted to studying detection and identification of such threats in order to mitigate their drawbacks. Among used tools, Machine Learning (ML) has become dominant in the field due to many usability characteristics including the blackbox models availability. In this context, this paper is dedicated to the detection of cyberattacks in Smart Grid (SG) networks which uses industrial control systems (ICS), through the integration of ML models assembled on a small scale. More precisely, it therefore aims to study an electric traction substation system used for the railway industry. The main novelty of our contribution lies in the study of the behaviour of more realistic data than the traditional studies previously shown in the state of the art literature by investigating even more realistic types of attacks. It also emulates data analysis and a larger feature space under most commonly used connectivity protocols in today’s industry such as S7Comm and Modbus.
Berghout T, Benbouzid M. EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids. Reliability Engineering & System Safety [Internet]. 2022;226. Publisher's VersionAbstract
Reliability and security of power distribution and data traffic in smart grid (SG) are very important for industrial control systems (ICS). Indeed, SG cyber-physical connectivity is subject to several vulnerabilities that can damage or disrupt its process immunity via cyberthreats. Today’s ICSs are experiencing highly complex data change and dynamism, increasing the complexity of detecting and mitigating cyberattacks. Subsequently, and since Machine Learning (ML) is widely studied in cybersecurity, the objectives of this paper are twofold. First, for algorithmic simplicity, a small-scale ML algorithm that attempts to reduce computational costs is proposed. The algorithm adopts a neural network with an augmented hidden layer (NAHL) to easily and efficiently accomplish the learning procedures. Second, to solve the data complexity problem regarding rapid change and dynamism, a label autoencoding approach is introduced for Embedding Labels in the NAHL (EL-NAHL) architecture to take advantage of labels propagation when separating data scatters. Furthermore, to provide a more realistic analysis by addressing real-world threat scenarios, a dataset of an electric traction substation used in the high-speed rail industry is adopted in this work. Compared to some existing algorithms and other previous works, the achieved results show that the proposed EL-NAHL architecture is effective even under massive dynamically changed and imbalanced data.
Berghout T, Benbouzid M, Bentrcia T, Amirat Y, Mouss L{\"ıla-H. Exposing Deep Representations to a Recurrent Expansion with Multiple Repeats for Fuel Cells Time Series Prognosis. Le{\"ıla-Hayet [Internet]. 2022;24 (7). Publisher's VersionAbstract
The green conversion of proton exchange membrane fuel cells (PEMFCs) has received particular attention in both stationary and transportation applications. However, the poor durability of PEMFC represents a major problem that hampers its commercial application since dynamic operating conditions, including physical deterioration, have a serious impact on the cell performance. Under these circumstances, prognosis and health management (PHM) plays an important role in prolonging durability and preventing damage propagation via the accurate planning of a condition-based maintenance (CBM) schedule. In this specific topic, health deterioration modeling with deep learning (DL) is the widely studied representation learning tool due to its adaptation ability to rapid changes in data complexity and drift. In this context, the present paper proposes an investigation of further deeper representations by exposing DL models themselves to recurrent expansion with multiple repeats. Such a recurrent expansion of DL (REDL) allows new, more meaningful representations to be explored by repeatedly using generated feature maps and responses to create new robust models. The proposed REDL, which is designed to be an adaptive learning algorithm, is tested on a PEMFC deterioration dataset and compared to its deep learning baseline version under time series analysis. Using multiple numeric and visual metrics, the results support the REDL learning scheme by showing promising performances.
Berghout T, Bentrcia T, Ferrag M-A, Benbouzid M. A Heterogeneous Federated Transfer Learning Approach with Extreme Aggregation and Speed. Mathematics [Internet]. 2022;10 (19). Publisher's VersionAbstract
Federated learning (FL) is a data-privacy-preserving, decentralized process that allows local edge devices of smart infrastructures to train a collaborative model independently while keeping data localized. FL algorithms, encompassing a well-structured average of the training parameters (e.g., the weights and biases resulting from training-based stochastic gradient descent variants), are subject to many challenges, namely expensive communication, systems heterogeneity, statistical heterogeneity, and privacy concerns. In this context, our paper targets the four aforementioned challenges while focusing on reducing communication and computational costs by involving recursive least squares (RLS) training rules. Accordingly, to the best of our knowledge, this is the first time that the RLS algorithm is modified to completely accommodate non-independent and identically distributed data (non-IID) for federated transfer learning (FTL). Furthermore, this paper also introduces a newly generated dataset capable of emulating such real conditions and of making data investigation available on ordinary commercial computers with quad-core microprocessors and less need for higher computing hardware. Applications of FTL-RLS on the generated data under different levels of complexity closely related to different levels of cardinality lead to a variety of conclusions supporting its performance for future uses.
Berghout T, Benbouzid M, Muyeen S-M. Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects. International Journal of Critical Infrastructure Protection [Internet]. 2022;38. Publisher's VersionAbstract
In modern Smart Grids (SGs) ruled by advanced computing and networking technologies, condition monitoring relies on secure cyberphysical connectivity. Due to this connection, a portion of transported data, containing confidential information, must be protected as it is vulnerable and subject to several cyber threats. SG cyberspace adversaries attempt to gain access through networking platforms to commit several criminal activities such as disrupting or malicious manipulation of whole electricity delivery process including generation, distribution, and even customer services such as billing, leading to serious damage, including financial losses and loss of reputation. Therefore, human awareness training and software technologies are necessary precautions to ensure the reliability of data traffic and power transmission. By exploring the available literature, it is undeniable that Machine Learning (ML) has become the latest in the timeline and one of the leading artificial intelligence technologies capable of detecting, identifying, and responding by mitigating adversary attacks in SGs. In this context, the main objective of this paper is to review different ML tools used in recent years for cyberattacks analysis in SGs. It also provides important guidelines on ML model selection as a global solution when building an attack predictive model. A detailed classification is therefore developed with respect to data security triad, i.e., Confidentiality, Integrity, and Availability (CIA) within different types of cyber threats, systems, and datasets. Furthermore, this review highlights the various encountered challenges, drawbacks, and possible solutions as future prospects for ML cybersecurity applications in SGs.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M. A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Energy Conversion [Internet]. 2022;37 (2). Publisher's VersionAbstract
Deep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
Berghout T, Benbouzid M. A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics [Internet]. 2022;11 (7). Publisher's VersionAbstract
Prognosis and health management (PHM) are mandatory tasks for real-time monitoring of damage propagation and aging of operating systems during working conditions. More definitely, PHM simplifies conditional maintenance planning by assessing the actual state of health (SoH) through the level of aging indicators. In fact, an accurate estimate of SoH helps determine remaining useful life (RUL), which is the period between the present and the end of a system’s useful life. Traditional residue-based modeling approaches that rely on the interpretation of appropriate physical laws to simulate operating behaviors fail as the complexity of systems increases. Therefore, machine learning (ML) becomes an unquestionable alternative that employs the behavior of historical data to mimic a large number of SoHs under varying working conditions. In this context, the objective of this paper is twofold. First, to provide an overview of recent developments of RUL prediction while reviewing recent ML tools used for RUL prediction in different critical systems. Second, and more importantly, to ensure that the RUL prediction process from data acquisition to model building and evaluation is straightforward. This paper also provides step-by-step guidelines to help determine the appropriate solution for any specific type of driven data. This guide is followed by a classification of different types of ML tools to cover all the discussed cases. Ultimately, this review-based study uses these guidelines to determine learning model limitations, reconstruction challenges, and future prospects.
2021
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H. Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9. Publisher's VersionAbstract
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
HADJIDJ N, Benbrahim M, Berghout T, Mouss L-H. A Comparative Study Between Data-Based Approaches Under Earlier Failure Detection, in ICCIS2020. Vol 204. India: Lecture Notes in Networks and Systems ; 2021 :235–239. Publisher's VersionAbstract
A comparative study between a set of chosen machine learning tools for direct remaining useful life prediction is presented in this work. The main objective of this study is to select the appropriate prediction tool for health estimation of aircraft engines for future uses. The training algorithms are evaluated using “time-varying” data retrieved from Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) developed by NASA. The training and testing processes of each algorithm are carried out under the same circumstances using the similar initial condition and evaluation sets. The results prove that among the studied training tools, Support vector machine (SVM) achieved the best results.
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M. A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Engineering [Internet]. 2021;221 (1). Publisher's VersionAbstract
In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X. Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18). Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Berghout T, Benbouzid M, Mouss H-L. Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8). Publisher's VersionAbstract

Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.

Berghout T, Benbouzid M, Ma X, Djurović S, Mouss L-H. Machine Learning for Photovoltaic Systems Condition Monitoring: A Review. 47th Annual Conference of the IEEE Industrial Electronics Society, IECON [Internet]. 2021. Publisher's VersionAbstract
Condition Monitoring of photovoltaic systems plays an important role in maintenance interventions due to its ability to solve problems of loss of energy production revenue. Nowadays, machine learning-based failure diagnosis is becoming increasingly growing as an alternative to various difficult physical-based interpretations and the main pile foundation for condition monitoring. As a result, several methods with different learning paradigms (e.g. deep learning, transfer learning, reinforcement learning, ensemble learning, etc.) have been used to address different condition monitoring issues. Therefore, the aim of this paper is at least, to shed light on the most relevant work that has been done so far in the field of photovoltaic systems machine learning-based condition monitoring.
Berghout T, Benbouzid M, Bentrcia T, Ma X, sa Djurović S\v, Mouss L-H. Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects. Energies [Internet]. 2021;14 (19). Publisher's VersionAbstract
To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.
Berghout T. Proposition d’un système distribué de diagnostic et pronostic basé sur les services Web et Extrême Learning Machine. [Internet]. 2021. Publisher's VersionAbstract
Cette thèse traite de l’utilisation d’un outil de Machine Learning appelé "Extreme Learning Machine" dans le domaine du pronostic et de l’évaluation de la santé (e.g. estimation de la durée de vie utile restante (RUL)). Cet algorithme implique des méthodes de programmation linéaires qui reposent principalement sur les moindres carrés dans les paradigmes non linéaires des réseaux de neurones artificiels pour produire des estimateurs de santé très rapides et précis. D’autres parts, cette étude vise à distribuer le système de prédiction sur le web à l’aide de services Web pour résoudre les problèmes de répartition géographique de surveillance décentralisée. Sur la base de ce nouvel outil, de nombreux algorithmes d’apprentissage ont été développés dans le cadre de ce travail et comparés à d’autres algorithmes présents dans la littérature en termes de temps et de précision. La plupart des algorithmes développés sont inspirés des théories récentes de Deep Learning et ce en raison de leur bonne réputation. Les données étudiées dans ce travail de recherche sont tirées du logiciel C-MAPSS simulateur de système de propulsion aérodynamique développé par la NASA. Les résultats obtenus ont prouvé l’efficacité des nouveaux algorithmes et les recommandent pour une utilisation future dans le domaine de l’évaluation de la santé.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M. A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement (2022) [Internet]. 2021;37 (2). Publisher's VersionAbstract
Deep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.

Pages