Publications by Author: Berghout, Tarek

2021
Berghout T, Benbouzid M, Mouss L-H. Sequence-To-Sequence Health Index Estimation of Rolling Bearings with Long-Short Term Memory and Transfer Learning. 47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021 [Internet]. 2021. Publisher's VersionAbstract
One of the main data-driven challenges when assessing bearing health is that training and test samples must be drawn from the same probability distribution. Indeed, it is difficult and almost rare to witness such a phenomenon in practical applications due to the constantly changing working conditions of rotating machines. In addition, collecting sufficient deterioration samples from the bearing life cycle is not possible due to the huge memory requirements and processing costs. As a result, accelerated life tests are believed to be the primary alternatives to such a situation. However, and unfortunately, the recorded samples always are subject to lack of real patterns. Therefore, in this paper, a transfer learning approach is performed to solve such kind of problem where PRONOSTICO dataset is used to assess the current procedures.
Berghout T, Benbouzid M, Muyeen SM, Bentrcia T, Mouss L-H. Auto-NAHL: A neural network approach for condition-based maintenance of complex industrial systems. IEEE Access [Internet]. 2021;9 :152829-152840. Publisher's VersionAbstract

Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.

Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M. A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean EngineeringOcean Engineering [Internet]. 2021;221 :108525. Publisher's VersionAbstract

In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.

Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X. Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967. Publisher's VersionAbstract

Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.

Berghout T, Benbouzid M, Mouss L-H. Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8) :2163. Publisher's VersionAbstract

Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.

Berghout T, Benbouzid M, Ma X, Djurović S, Mouss L-H. Machine Learning for Photovoltaic Systems Condition Monitoring: A Review. IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society [Internet]. 2021 :1-5. Publisher's VersionAbstract
Condition Monitoring of photovoltaic systems plays an important role in maintenance interventions due to its ability to solve problems of loss of energy production revenue. Nowadays, machine learning-based failure diagnosis is becoming increasingly growing as an alternative to various difficult physical-based interpretations and the main pile foundation for condition monitoring. As a result, several methods with different learning paradigms (e.g. deep learning, transfer learning, reinforcement learning, ensemble learning, etc.) have been used to address different condition monitoring issues. Therefore, the aim of this paper is at least, to shed light on the most relevant work that has been done so far in the field of photovoltaic systems machine learning-based condition monitoring.
Berghout T, Benbouzid M, Bentrcia T, Ma X, Djurović S, Mouss L-H. Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects. Energies [Internet]. 2021;14. Publisher's VersionAbstract

To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.

Berghout T, Mouss L-H, Bentrcia T, Benbouzid M. A Semi-supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Energy ConversionIEEE Transactions On Energy Conversion. 2021.
Berghout T, Benbouzid M, Mouss L-H. Sequence-To-Sequence Health Index Estimation of Rolling Bearings with Long-Short Term Memory and Transfer Learning. IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society [Internet]. 2021 :1-5. Publisher's VersionAbstract
One of the main data-driven challenges when assessing bearing health is that training and test samples must be drawn from the same probability distribution. Indeed, it is difficult and almost rare to witness such a phenomenon in practical applications due to the constantly changing working conditions of rotating machines. In addition, collecting sufficient deterioration samples from the bearing life cycle is not possible due to the huge memory requirements and processing costs. As a result, accelerated life tests are believed to be the primary alternatives to such a situation. However, and unfortunately, the recorded samples always are subject to lack of real patterns. Therefore, in this paper, a transfer learning approach is performed to solve such kind of problem where PRONOSTICO dataset is used to assess the current procedures.
2020
Berghout T, Mouss L-H, KADRI O. Adaptive Sparse On-line Sequential Autoencoder for Sensors Measurements Compression Applied to Military Aircraft Engines. 8thINTERNATIONAL CONFERENCEON DEFENSESYSTEMS: ARCHITECTURES AND TECHNOLOGIES (DAT’2020) April14-16 [Internet]. 2020. Publisher's VersionAbstract
In this work a new data-driven compression approach is presented. The compression algorithm is an autoencoder trained with an improved On-line sequential Extreme Learning Machine (OS-ELM). First, a dynamic adaptation of the training algorithm towards the newly coming data is achieved by integrating an updated selection strategy (USS) and dynamic forgetting function (DDF). Second, Singular Value Decomposition (SVD) is involved to enhance hidden layer representation via sparse mapping. This new developed autoencoder (ASOS- AE) is compared with the ordinary OS-ELM autoencoder (OS-AE) and proved its accuracy in CMAPSS dataset (Commercial Modular Aero-Propulsion System Simulation). The C-MAPSS software has revisions in civil and military applications. In the present work we used the military version of its applications.
Berghout T, Mouss L{\"ıla-H, KADRI O, Sa{\"ıdi L, Benbouzid M. Aircraft Engines Remaining Useful Life Prediction with an Improved Online Sequential Extreme Learning Machine. Appl. Sci [Internet]. 2020;10 (3). Publisher's VersionAbstract
The efficient data investigation for fast and accurate remaining useful life prediction of aircraft engines can be considered as a very important task for maintenance operations. In this context, the key issue is how an appropriate investigation can be conducted for the extraction of important information from data-driven sequences in high dimensional space in order to guarantee a reliable conclusion. In this paper, a new data-driven learning scheme based on an online sequential extreme learning machine algorithm is proposed for remaining useful life prediction. Firstly, a new feature mapping technique based on stacked autoencoders is proposed to enhance features representations through an accurate reconstruction. In addition, to attempt into addressing dynamic programming based on environmental feedback, a new dynamic forgetting function based on the temporal difference of recursive learning is introduced to enhance dynamic tracking ability of newly coming data. Moreover, a new updated selection strategy was developed in order to discard the unwanted data sequences and to ensure the convergence of the training model parameters to their appropriate values. The proposed approach is validated on the C-MAPSS dataset where experimental results confirm that it yields satisfactory accuracy and efficiency of the prediction model compared to other existing methods.
Berghout T, Mouss L-H, KADRI O. Dynamic Adaptation for Length Changeable Weighted Extreme Learning Machine. International conferance of intelligent [Internet]. 2020. Publisher's VersionAbstract
In this paper, a new length changeable extreme learning machine is proposed. The aim of the proposed method is to improve the learning performances of a Single hidden layer feedforward neural network (SLFN) under rich dynamic imbalanced data. Particle Swarm Optimization (PSO) is involved for hyper-parameters tuning and updating during incremental learning. The algorithm is evaluated using a subset from C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset of gas turbine engine and compared to its derivatives. The results prove that the new algorithm has a better learning attitude. The toolbox that contains the developed algorithms of this comparative study is publicly available.
Berghout T, Mouss L-H, KADRI O. Regularization Based Particle Swarm Optimization for Length Changeable Extreme Learning Machine under Health State Estimation of Military Aircraft Engines. 8thINTERNATIONAL CONFERENCEON DEFENSESYSTEMS: ARCHITECTURES AND TECHNOLOGIES (DAT’2020) April14-16, [Internet]. 2020. Publisher's VersionAbstract
In this work a new data-driven approach for Remaining Useful Life estimation of aircraft engines is developed. The proposed approach is a regularized Single Hidden Layer Feedforward Neural network (SLFN) with incremental constructive enhancements. The training rules of this algorithm are inspired form different Extreme Learning Machine (ELM) variants. Particle Swarm Optimization (PSO) algorithm is integrated to enhance tracking ability of the best regularization parameter to reduce the norm of the tuned weights. The proposed approach is evaluated using C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset and compared to its other derivatives and proved its accuracy. C-MAPSS software has revisions in military and civil applications. In this paper, the military version of its application is the used one.
Berghout T, Mouss L-H. Regularized Length Changeable Extreme Learning Machine with Incremental Learning Enhancements for Remaining Useful Life Prediction of Aircraft Engines. 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), 16-17 May [Internet]. 2020. Publisher's VersionAbstract
The main objective of this works is to study and improve the performances of the Single hidden Layer Feedforward Neural network (SLFN) for the application of Remaining Useful Life (RUL) prediction of aircraft engines. The most common problems in SLFNs based old training algorithms such as backpropagation are time consuming, over-fitting and the appropriate network architecture identification. In this paper a new incremental constructive learning algorithm based on Extreme Learning Machine algorithm is proposed for founding the appropriate architecture of a neural network under less computational costs. The aim of the proposed training approach is to study its maximum capabilities during RUL prediction by reducing over-fitting and human intervention. The performances of the proposed approach which are evaluated on C-MAPPS dataset and compared with its original variant from the literature. Experimental results proved that the new algorithm outperforms the old one in many metrics evaluations.
Berghout T, Mouss L-H, KADRI O. Remaining Useful Life Prediction for aircraft engines with a new Denoising On-Line Sequential Extreme Learning Machine with Double Dynamic Forgetting Factors and Update Selection Strategy. 12th Conference on Mechanical Engineering March 17-18, 2020 Ecole Militaire Polytechnique Bordj El Bahri [Internet]. 2020. Publisher's Version
Berghout T, Mouss L-H, KADRI O, Saïdi L, Benbouzid M. Aircraft engines Remaining Useful Life prediction with an adaptive denoising online sequential Extreme Learning Machine. Engineering Applications of Artificial IntelligenceEngineering Applications of Artificial Intelligence. 2020;96 :103936.
Berghout T, Mouss L-H, KADRI O, Saïdi L, Benbouzid M. Aircraft engines remaining useful life prediction with an improved online sequential extreme learning machine. Applied SciencesApplied Sciences. 2020;10 :1062.
Berghout T, Mouss LH, KADRI O, HADJIDJ N. Regularized Length Changeable Extreme Learning Machine with Incremental Learning Enhancements for Remaining Useful Life Prediction of Aircraft Engines. 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). 2020 :358-363.

Pages