Publications by Author: Gueymard, Chris

2021
Louchene H-E, Bouzgou H, Gueymard C. Residual Networks with Long Short Term Memory for Hourly Solar Radiation Forecasting. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021. Publisher's VersionAbstract
This paper describes a new approach for hourly global solar radiation forecasting based on a hybrid artificial neural network technique combining a residual neural network (RESNET) for powerful feature extraction of the most relevant moments of the past, and a long short-term memory (LSTM) technique for efficient projection into the future. Based on 11 years of solar irradiance measurements at Tamanrasset, Algeria, four evaluation metrics are used to demonstrate the efficiency of the proposed method: coefficient of determination (R²), root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These metrics are also used to evaluate the performance of the model in comparison with two existing forecasting models used as benchmark: a particular technique of convolutional neural network (CNN) called 1-dimensional convolutional neural network (1D-CNN) and a conventional LSTM. The present results indicate that the proposed RESNET-LSTM model outperforms the other models in terms of all statistical indicators.
2020
zemouri N, Bouzgou H, Gueymard C. Global Solar Radiation Forecasting With Evolutionary Autoregressive Models. 4th International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’20) [Internet]. 2020. Publisher's VersionAbstract
Nowadays, the integration of solar power into the electrical grids is vital to increase energy efficiency and profitability. Effective usage of the instable solar production of photovoltaic (PV) systems necessitates trustworthy forecasting information. Actually, this addition can gives an ameliorated service quality if the solar radiation variation can be forecasted accurately. In this paper, we propose a new forecasting approach that integrates Autoregressive Moving Average (ARMA) and Genetic algorithms (GA) to make benefit of both of them in order to forecast Global Horizontal Irradiance (GHI) component. The proposed approach is compared with the standard ARMA model. The experimental results show that, the proposed approach outperforms the classical ARMA models in terms of mean absolute percentage error (MAPE), root mean squared error (RMSE) coefficient of determination (R)2 and the normalized mean squared error (NMSE).