2019
Dahmane H, Nabil B, Bachir H, Khaldoun LI, Abdelhadi B.
Composite Material Characterization using Eddy Current by 3D FEM Associated with Iterative Technique, ISSN 2119-0275. Advanced Electromagnetics Journal (AEMJ) [Internet]. 2019;volume 8 (N°1).
Publisher's VersionAbstractIn this paper, an iterative technique, employing the T formulation associated with the finite element method, based on Maxwell’s equations and the Biot-savart law, is used for analyzing the density of eddy currents in composite carbon fiber reinforced polymer (CFRP) materials. For this purpose, a code has been developed for solving an electromagnetic 3D non-destructive evaluation problem. This latter permits the characterization of this CFRP and determinate of fibers orientation using the impedance variation which is implanted in polar diagram. Firstly, the obtained results are compared with those of the analytical model. This comparison reveals a high concordance which proves the validity of the proposed method. Secondly, three different applications are shown for illustrating the characterization of unidirectional, bidirectional and multidirectional piece using a rectangular coil plotted in normalized impedance diagram.
Dahmane H, Nabil B, Bachir H, Khaldoun LI, Abdelhadi B.
Composite Material Characterization using Eddy Current by 3D FEM Associated with Iterative Technique, ISSN 2119-0275. Advanced Electromagnetics Journal (AEMJ) [Internet]. 2019;volume 8 (N°1).
Publisher's VersionAbstractIn this paper, an iterative technique, employing the T formulation associated with the finite element method, based on Maxwell’s equations and the Biot-savart law, is used for analyzing the density of eddy currents in composite carbon fiber reinforced polymer (CFRP) materials. For this purpose, a code has been developed for solving an electromagnetic 3D non-destructive evaluation problem. This latter permits the characterization of this CFRP and determinate of fibers orientation using the impedance variation which is implanted in polar diagram. Firstly, the obtained results are compared with those of the analytical model. This comparison reveals a high concordance which proves the validity of the proposed method. Secondly, three different applications are shown for illustrating the characterization of unidirectional, bidirectional and multidirectional piece using a rectangular coil plotted in normalized impedance diagram.
Dahmane H, Nabil B, Bachir H, Khaldoun LI, Abdelhadi B.
Composite Material Characterization using Eddy Current by 3D FEM Associated with Iterative Technique, ISSN 2119-0275. Advanced Electromagnetics Journal (AEMJ) [Internet]. 2019;volume 8 (N°1).
Publisher's VersionAbstractIn this paper, an iterative technique, employing the T formulation associated with the finite element method, based on Maxwell’s equations and the Biot-savart law, is used for analyzing the density of eddy currents in composite carbon fiber reinforced polymer (CFRP) materials. For this purpose, a code has been developed for solving an electromagnetic 3D non-destructive evaluation problem. This latter permits the characterization of this CFRP and determinate of fibers orientation using the impedance variation which is implanted in polar diagram. Firstly, the obtained results are compared with those of the analytical model. This comparison reveals a high concordance which proves the validity of the proposed method. Secondly, three different applications are shown for illustrating the characterization of unidirectional, bidirectional and multidirectional piece using a rectangular coil plotted in normalized impedance diagram.
Dahmane H, Nabil B, Bachir H, Khaldoun LI, Abdelhadi B.
Composite Material Characterization using Eddy Current by 3D FEM Associated with Iterative Technique, ISSN 2119-0275. Advanced Electromagnetics Journal (AEMJ) [Internet]. 2019;volume 8 (N°1).
Publisher's VersionAbstractIn this paper, an iterative technique, employing the T formulation associated with the finite element method, based on Maxwell’s equations and the Biot-savart law, is used for analyzing the density of eddy currents in composite carbon fiber reinforced polymer (CFRP) materials. For this purpose, a code has been developed for solving an electromagnetic 3D non-destructive evaluation problem. This latter permits the characterization of this CFRP and determinate of fibers orientation using the impedance variation which is implanted in polar diagram. Firstly, the obtained results are compared with those of the analytical model. This comparison reveals a high concordance which proves the validity of the proposed method. Secondly, three different applications are shown for illustrating the characterization of unidirectional, bidirectional and multidirectional piece using a rectangular coil plotted in normalized impedance diagram.
Dahmane H, Nabil B, Bachir H, Khaldoun LI, Abdelhadi B.
Composite Material Characterization using Eddy Current by 3D FEM Associated with Iterative Technique, ISSN 2119-0275. Advanced Electromagnetics Journal (AEMJ) [Internet]. 2019;volume 8 (N°1).
Publisher's VersionAbstractIn this paper, an iterative technique, employing the T formulation associated with the finite element method, based on Maxwell’s equations and the Biot-savart law, is used for analyzing the density of eddy currents in composite carbon fiber reinforced polymer (CFRP) materials. For this purpose, a code has been developed for solving an electromagnetic 3D non-destructive evaluation problem. This latter permits the characterization of this CFRP and determinate of fibers orientation using the impedance variation which is implanted in polar diagram. Firstly, the obtained results are compared with those of the analytical model. This comparison reveals a high concordance which proves the validity of the proposed method. Secondly, three different applications are shown for illustrating the characterization of unidirectional, bidirectional and multidirectional piece using a rectangular coil plotted in normalized impedance diagram.
Yazid ZM, Lamia Y, Belkacem S, Farid N.
Design of Robust Control using Fuzzy Logic Controller for Doubly Frd Induction Motor Drives, ISSN / e-ISSN 1454 / 234X. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics [Internet]. 2019;volume 81 (issue 1).
Publisher's VersionAbstractThis paper presents a fuzzy logic controller destined to the doubly-fed induction motor (DFIM) speed controlling. It solves the problems associated with the conventional IP (Integral Proportional) controller. This fuzzy logic controller is based on the decoupling control to enhance robustness under different operating conditions such as load torque and in the presence of parameters variation. The simulation results for various scenarios show the high performances of the proposed control in terms of piloting effectiveness, precision, rapidity and stability for the high powers DFIM operating at variable speeds.
Yazid ZM, Lamia Y, Belkacem S, Farid N.
Design of Robust Control using Fuzzy Logic Controller for Doubly Frd Induction Motor Drives, ISSN / e-ISSN 1454 / 234X. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics [Internet]. 2019;volume 81 (issue 1).
Publisher's VersionAbstractThis paper presents a fuzzy logic controller destined to the doubly-fed induction motor (DFIM) speed controlling. It solves the problems associated with the conventional IP (Integral Proportional) controller. This fuzzy logic controller is based on the decoupling control to enhance robustness under different operating conditions such as load torque and in the presence of parameters variation. The simulation results for various scenarios show the high performances of the proposed control in terms of piloting effectiveness, precision, rapidity and stability for the high powers DFIM operating at variable speeds.