Publications

2019
Boubiche DE, Imran M, Maqsood A, Shoaib M. Mobile crowd sensing – Taxonomy, applications, challenges, and solutions. Computers in Human BehaviorComputers in Human Behavior. 2019;101 :352-370.Abstract
Recently, mobile crowd sensing (MCS) is captivating growing attention because of their suitability for enormous range of new types of context-aware applications and services. This is attributed to the fact that modern smartphones are equipped with unprecedented sensing, computing, and communication capabilities that allow them to perform more complex tasks besides their inherent calling features. Despite a number of merits, MCS confronts new challenges due to network dynamics, the huge volume of data, sensing task coordination, and the user privacy problems. In this paper, a comprehensive review of MCS is presented. First, we highlight the distinguishing features and potential advantages of MCS compared to conventional sensor networks. Then, a taxonomy of MCS is devised based on sensing scale, level of user involvement and responsiveness, sampling rate, and underlying network infrastructure. Afterward, we categorize and classify prominent applications of MCS in environmental, infrastructure, social, and behavioral domains. The core architecture of MCS is also described. Finally, we describe the potential advantages, determine and reiterate the open research challenges of MCS and illustrate possible solutions.
Boubiche DE, Imran M, Maqsood A, Shoaib M. Mobile crowd sensing–taxonomy, applications, challenges, and solutions. Computers in Human BehaviorComputers in Human Behavior. 2019;101 :352-370.
Boubiche DE, Imran M, Maqsood A, Shoaib M. Mobile crowd sensing–taxonomy, applications, challenges, and solutions. Computers in Human BehaviorComputers in Human Behavior. 2019;101 :352-370.
Boubiche DE, Imran M, Maqsood A, Shoaib M. Mobile crowd sensing–taxonomy, applications, challenges, and solutions. Computers in Human BehaviorComputers in Human Behavior. 2019;101 :352-370.
Boubiche DE, Imran M, Maqsood A, Shoaib M. Mobile crowd sensing–taxonomy, applications, challenges, and solutions. Computers in Human BehaviorComputers in Human Behavior. 2019;101 :352-370.
Nianga J-M, Mejni F, Kanit T, Imad A, Li J. Mode I stress intensity factor and T-stress by exponential matrix method. Theoretical and Applied Fracture MechanicsTheoretical and Applied Fracture Mechanics. 2019;103 :102287.
Nianga J-M, Mejni F, Kanit T, Imad A, Li J. Mode I stress intensity factor and T-stress by exponential matrix method. Theoretical and Applied Fracture MechanicsTheoretical and Applied Fracture Mechanics. 2019;103 :102287.
Nianga J-M, Mejni F, Kanit T, Imad A, Li J. Mode I stress intensity factor and T-stress by exponential matrix method. Theoretical and Applied Fracture MechanicsTheoretical and Applied Fracture Mechanics. 2019;103 :102287.
Nianga J-M, Mejni F, Kanit T, Imad A, Li J. Mode I stress intensity factor and T-stress by exponential matrix method. Theoretical and Applied Fracture MechanicsTheoretical and Applied Fracture Mechanics. 2019;103 :102287.
Nianga J-M, Mejni F, Kanit T, Imad A, Li J. Mode I stress intensity factor and T-stress by exponential matrix method. Theoretical and Applied Fracture MechanicsTheoretical and Applied Fracture Mechanics. 2019;103 :102287.
Slimane W, Benchouia MT, Golea A, Ait-Mohamed-Said I, Drid S, Chrifi-Alaoui L. Modeling and simulation of the DFIG using in the wind energy conversion system for an isolated site. 2019 International Conference on Control, Automation and Diagnosis (ICCAD). 2019 :1-5.
Slimane W, Benchouia MT, Golea A, Ait-Mohamed-Said I, Drid S, Chrifi-Alaoui L. Modeling and simulation of the DFIG using in the wind energy conversion system for an isolated site. 2019 International Conference on Control, Automation and Diagnosis (ICCAD). 2019 :1-5.
Slimane W, Benchouia MT, Golea A, Ait-Mohamed-Said I, Drid S, Chrifi-Alaoui L. Modeling and simulation of the DFIG using in the wind energy conversion system for an isolated site. 2019 International Conference on Control, Automation and Diagnosis (ICCAD). 2019 :1-5.
Slimane W, Benchouia MT, Golea A, Ait-Mohamed-Said I, Drid S, Chrifi-Alaoui L. Modeling and simulation of the DFIG using in the wind energy conversion system for an isolated site. 2019 International Conference on Control, Automation and Diagnosis (ICCAD). 2019 :1-5.
Slimane W, Benchouia MT, Golea A, Ait-Mohamed-Said I, Drid S, Chrifi-Alaoui L. Modeling and simulation of the DFIG using in the wind energy conversion system for an isolated site. 2019 International Conference on Control, Automation and Diagnosis (ICCAD). 2019 :1-5.
Slimane W, Benchouia MT, Golea A, Ait-Mohamed-Said I, Drid S, Chrifi-Alaoui L. Modeling and simulation of the DFIG using in the wind energy conversion system for an isolated site. 2019 International Conference on Control, Automation and Diagnosis (ICCAD). 2019 :1-5.
Heda Z. Modélisation et Optimisation des systèmes renouvelables hybrides pour les sites autonomes. Génie Industriel. 2019.Abstract

Les systèmes d'énergie solaire et éolienne sont omniprésents, librement disponibles, respectueux de l'environnement et sont considérés comme des sources d'énergie prometteuses en raison de leur disponibilité et de leurs avantages topologiques pour les générations d’énergies locales. Les systèmes hybrides d'énergie solaire-éolienne, utilisant deux sources d'énergie renouvelables, permettent d'améliorer l'efficacité du système, la fiabilité de l'alimentation et la réduction des besoins en stockage d'énergie pour les applications autonomes. Les systèmes hybrides solaires-éoliens deviennent populaires dans les applications de production d'électricité dans les régions éloignées en raison des progrès réalisés dans les technologies d'énergie renouvelable et de la hausse substantielle des prix des produits pétroliers. Dans cette thèse, nous nous proposons d'étudier une variété d'outils méthodologiques pour la simulation, l'optimisation et le contrôle des systèmes d'énergies solaire-éolienne hybrides autonomes avec stockage de batterie. On constate que les efforts continus de recherche et de développement dans ce domaine sont encore nécessaires pour améliorer la performance de ces systèmes, établir des techniques pour prédire avec précision leur production et les intégrer de manière fiable à d'autres sources de production d'énergie renouvelable ou conventionnelle.

Rahmani M, Meziani Z, Dibi Z. Modelling graphene/n-Si Schottky junction solar cells by artificial neural networks. 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA). 2019 :1-6.
Rahmani M, Meziani Z, Dibi Z. Modelling graphene/n-Si Schottky junction solar cells by artificial neural networks. 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA). 2019 :1-6.
Rahmani M, Meziani Z, Dibi Z. Modelling graphene/n-Si Schottky junction solar cells by artificial neural networks. 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA). 2019 :1-6.

Pages