Publications

2018
Hadjkacem‐Loukil L, Hadj‐kacem H, Hadj Salem I, Bahloul A, Fakhfakh F, Ayadi H. Retracted: Genotyping of Tunisian azoospermic men with Sertoli cell‐only and maturation arrest. 2018.
Hadjkacem‐Loukil L, Hadj‐kacem H, Hadj Salem I, Bahloul A, Fakhfakh F, Ayadi H. Retracted: Genotyping of Tunisian azoospermic men with Sertoli cell‐only and maturation arrest. 2018.
Hadjkacem‐Loukil L, Hadj‐kacem H, Hadj Salem I, Bahloul A, Fakhfakh F, Ayadi H. Retracted: Genotyping of Tunisian azoospermic men with Sertoli cell‐only and maturation arrest. 2018.
Abderrahim Y, Zohir D, Salim A, Hichem B, Lamir S. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach, ISSN / e-ISSN 2180-1843 / 2289-8131. Journal of Telecommunication, Electronic and Computer EngineeringJournal of Telecommunication, Electronic and Computer Engineering. 2018;volume 10.Abstract
This paper presents a hybrid strategy combining compact analytical models of short channel Gate-All-Around Junctionless (GAAJ) MOSFET and metaheuristic-based approach for parameters optimization. The proposed GAAJ MOSFET design includes highly extension regions doping. The aim is to investigate the impact of this design on the RF and analog performances systematically and to show the immunity behavior against the short channel effects (SCEs) degradation. In this context, an analytical model via the meticulous solution of 2D Poisson equation, incorporating source/drain (S/D) extensions effect, has been developed and verified by comparing it with TCAD simulation results. A comparative evaluation between the proposed GAAJ MOSFET structure and the classical device in terms of RF/Analog performances is also investigated. The proposed design provides RF/Analog performances improvement. Furthermore, based on the presented analytical models, Genetic Algorithms (GA) optimization approach is used to optimize the design of S/D parameters. The optimized structure exhibits better performances, i.e., cut-off frequency and drive current are improved. Besides, it shows superior immunity behavior against the RF/Analog degradation due to the unwanted SCEs. The insights offered by the proposed paradigm will help to enlighten designer in future challenges facing the GAAJ MOSFET technology for high RF/analog applications.
Yousfi A, Dibi Z, Aissi S, Bencherif H, Saidi L. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach. Journal of Telecommunication, Electronic and Computer Engineering (JTEC)Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2018;10 :81-90.
Abderrahim Y, Zohir D, Salim A, Hichem B, Lamir S. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach, ISSN / e-ISSN 2180-1843 / 2289-8131. Journal of Telecommunication, Electronic and Computer EngineeringJournal of Telecommunication, Electronic and Computer Engineering. 2018;volume 10.Abstract
This paper presents a hybrid strategy combining compact analytical models of short channel Gate-All-Around Junctionless (GAAJ) MOSFET and metaheuristic-based approach for parameters optimization. The proposed GAAJ MOSFET design includes highly extension regions doping. The aim is to investigate the impact of this design on the RF and analog performances systematically and to show the immunity behavior against the short channel effects (SCEs) degradation. In this context, an analytical model via the meticulous solution of 2D Poisson equation, incorporating source/drain (S/D) extensions effect, has been developed and verified by comparing it with TCAD simulation results. A comparative evaluation between the proposed GAAJ MOSFET structure and the classical device in terms of RF/Analog performances is also investigated. The proposed design provides RF/Analog performances improvement. Furthermore, based on the presented analytical models, Genetic Algorithms (GA) optimization approach is used to optimize the design of S/D parameters. The optimized structure exhibits better performances, i.e., cut-off frequency and drive current are improved. Besides, it shows superior immunity behavior against the RF/Analog degradation due to the unwanted SCEs. The insights offered by the proposed paradigm will help to enlighten designer in future challenges facing the GAAJ MOSFET technology for high RF/analog applications.
Yousfi A, Dibi Z, Aissi S, Bencherif H, Saidi L. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach. Journal of Telecommunication, Electronic and Computer Engineering (JTEC)Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2018;10 :81-90.
Abderrahim Y, Zohir D, Salim A, Hichem B, Lamir S. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach, ISSN / e-ISSN 2180-1843 / 2289-8131. Journal of Telecommunication, Electronic and Computer EngineeringJournal of Telecommunication, Electronic and Computer Engineering. 2018;volume 10.Abstract
This paper presents a hybrid strategy combining compact analytical models of short channel Gate-All-Around Junctionless (GAAJ) MOSFET and metaheuristic-based approach for parameters optimization. The proposed GAAJ MOSFET design includes highly extension regions doping. The aim is to investigate the impact of this design on the RF and analog performances systematically and to show the immunity behavior against the short channel effects (SCEs) degradation. In this context, an analytical model via the meticulous solution of 2D Poisson equation, incorporating source/drain (S/D) extensions effect, has been developed and verified by comparing it with TCAD simulation results. A comparative evaluation between the proposed GAAJ MOSFET structure and the classical device in terms of RF/Analog performances is also investigated. The proposed design provides RF/Analog performances improvement. Furthermore, based on the presented analytical models, Genetic Algorithms (GA) optimization approach is used to optimize the design of S/D parameters. The optimized structure exhibits better performances, i.e., cut-off frequency and drive current are improved. Besides, it shows superior immunity behavior against the RF/Analog degradation due to the unwanted SCEs. The insights offered by the proposed paradigm will help to enlighten designer in future challenges facing the GAAJ MOSFET technology for high RF/analog applications.
Yousfi A, Dibi Z, Aissi S, Bencherif H, Saidi L. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach. Journal of Telecommunication, Electronic and Computer Engineering (JTEC)Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2018;10 :81-90.
Abderrahim Y, Zohir D, Salim A, Hichem B, Lamir S. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach, ISSN / e-ISSN 2180-1843 / 2289-8131. Journal of Telecommunication, Electronic and Computer EngineeringJournal of Telecommunication, Electronic and Computer Engineering. 2018;volume 10.Abstract
This paper presents a hybrid strategy combining compact analytical models of short channel Gate-All-Around Junctionless (GAAJ) MOSFET and metaheuristic-based approach for parameters optimization. The proposed GAAJ MOSFET design includes highly extension regions doping. The aim is to investigate the impact of this design on the RF and analog performances systematically and to show the immunity behavior against the short channel effects (SCEs) degradation. In this context, an analytical model via the meticulous solution of 2D Poisson equation, incorporating source/drain (S/D) extensions effect, has been developed and verified by comparing it with TCAD simulation results. A comparative evaluation between the proposed GAAJ MOSFET structure and the classical device in terms of RF/Analog performances is also investigated. The proposed design provides RF/Analog performances improvement. Furthermore, based on the presented analytical models, Genetic Algorithms (GA) optimization approach is used to optimize the design of S/D parameters. The optimized structure exhibits better performances, i.e., cut-off frequency and drive current are improved. Besides, it shows superior immunity behavior against the RF/Analog degradation due to the unwanted SCEs. The insights offered by the proposed paradigm will help to enlighten designer in future challenges facing the GAAJ MOSFET technology for high RF/analog applications.
Yousfi A, Dibi Z, Aissi S, Bencherif H, Saidi L. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach. Journal of Telecommunication, Electronic and Computer Engineering (JTEC)Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2018;10 :81-90.
Abderrahim Y, Zohir D, Salim A, Hichem B, Lamir S. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach, ISSN / e-ISSN 2180-1843 / 2289-8131. Journal of Telecommunication, Electronic and Computer EngineeringJournal of Telecommunication, Electronic and Computer Engineering. 2018;volume 10.Abstract
This paper presents a hybrid strategy combining compact analytical models of short channel Gate-All-Around Junctionless (GAAJ) MOSFET and metaheuristic-based approach for parameters optimization. The proposed GAAJ MOSFET design includes highly extension regions doping. The aim is to investigate the impact of this design on the RF and analog performances systematically and to show the immunity behavior against the short channel effects (SCEs) degradation. In this context, an analytical model via the meticulous solution of 2D Poisson equation, incorporating source/drain (S/D) extensions effect, has been developed and verified by comparing it with TCAD simulation results. A comparative evaluation between the proposed GAAJ MOSFET structure and the classical device in terms of RF/Analog performances is also investigated. The proposed design provides RF/Analog performances improvement. Furthermore, based on the presented analytical models, Genetic Algorithms (GA) optimization approach is used to optimize the design of S/D parameters. The optimized structure exhibits better performances, i.e., cut-off frequency and drive current are improved. Besides, it shows superior immunity behavior against the RF/Analog degradation due to the unwanted SCEs. The insights offered by the proposed paradigm will help to enlighten designer in future challenges facing the GAAJ MOSFET technology for high RF/analog applications.
Yousfi A, Dibi Z, Aissi S, Bencherif H, Saidi L. RF/analog performances enhancement of short channel GAAJ MOSFET using source/drain extensions and metaheuristic optimization-based approach. Journal of Telecommunication, Electronic and Computer Engineering (JTEC)Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2018;10 :81-90.
Ali M, Noureddine S, Walid B. Robust control of mobile robot in presence of disturbances using neural network and global fast sliding mode, ISSN / e-ISSN 1064-1246 / 1875-8967. Journal of Intelligent And Fuzzy SystemsJournal of Intelligent And Fuzzy Systems. 2018;Volume 34 :pp 4345-4354.Abstract
In this paper a dynamic tracking control of mobile robot using neural network global fast sliding mode (NN-GFSM) is presented. The proposed strategy combines two control approaches, kinematic control and dynamic control. The laws of kinematic control are based on GFSM in order to determine the adequate velocities for the system stability in finite time. The dynamic controller combines two control techniques, the GFSM to stabilize the velocities errors, and a neural network controller in order to approximate a nonlinear function and to deal the disturbances. This dynamic controller allows the robots to follow the desired trajectory even in the presence of disturbances. The designed controller is dynamically simulated by using Matlab/ Simulink and the simulations results show the efficiency and robustness of the proposed control strategy.
Mallem A, Slimane N, Benaziza W. Robust control of mobile robot in presence of disturbances using neural network and global fast sliding mode. Journal of Intelligent & Fuzzy SystemsJournal of Intelligent & Fuzzy Systems. 2018;34 :4345-4354.
Ali M, Noureddine S, Walid B. Robust control of mobile robot in presence of disturbances using neural network and global fast sliding mode, ISSN / e-ISSN 1064-1246 / 1875-8967. Journal of Intelligent And Fuzzy SystemsJournal of Intelligent And Fuzzy Systems. 2018;Volume 34 :pp 4345-4354.Abstract
In this paper a dynamic tracking control of mobile robot using neural network global fast sliding mode (NN-GFSM) is presented. The proposed strategy combines two control approaches, kinematic control and dynamic control. The laws of kinematic control are based on GFSM in order to determine the adequate velocities for the system stability in finite time. The dynamic controller combines two control techniques, the GFSM to stabilize the velocities errors, and a neural network controller in order to approximate a nonlinear function and to deal the disturbances. This dynamic controller allows the robots to follow the desired trajectory even in the presence of disturbances. The designed controller is dynamically simulated by using Matlab/ Simulink and the simulations results show the efficiency and robustness of the proposed control strategy.
Mallem A, Slimane N, Benaziza W. Robust control of mobile robot in presence of disturbances using neural network and global fast sliding mode. Journal of Intelligent & Fuzzy SystemsJournal of Intelligent & Fuzzy Systems. 2018;34 :4345-4354.
Ali M, Noureddine S, Walid B. Robust control of mobile robot in presence of disturbances using neural network and global fast sliding mode, ISSN / e-ISSN 1064-1246 / 1875-8967. Journal of Intelligent And Fuzzy SystemsJournal of Intelligent And Fuzzy Systems. 2018;Volume 34 :pp 4345-4354.Abstract
In this paper a dynamic tracking control of mobile robot using neural network global fast sliding mode (NN-GFSM) is presented. The proposed strategy combines two control approaches, kinematic control and dynamic control. The laws of kinematic control are based on GFSM in order to determine the adequate velocities for the system stability in finite time. The dynamic controller combines two control techniques, the GFSM to stabilize the velocities errors, and a neural network controller in order to approximate a nonlinear function and to deal the disturbances. This dynamic controller allows the robots to follow the desired trajectory even in the presence of disturbances. The designed controller is dynamically simulated by using Matlab/ Simulink and the simulations results show the efficiency and robustness of the proposed control strategy.
Mallem A, Slimane N, Benaziza W. Robust control of mobile robot in presence of disturbances using neural network and global fast sliding mode. Journal of Intelligent & Fuzzy SystemsJournal of Intelligent & Fuzzy Systems. 2018;34 :4345-4354.
Cheikh R, Menacer A, Alaoui LC, Drid S. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator- based wind energy conversion system. Frontiers in EnergyFrontiers in Energy. 2018.Abstract
In this paper, the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system (WECS) is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment. The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques. The method is based on the differential geometric feedback linearization technique (DGT) and the Lyapunov theory. The results obtained show the effectiveness and performance of the proposed approach.

Pages