2021
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M.
A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Engineering [Internet]. 2021;221 (1).
Publisher's VersionAbstractIn the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M.
A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Engineering [Internet]. 2021;221 (1).
Publisher's VersionAbstractIn the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M.
A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Engineering [Internet]. 2021;221 (1).
Publisher's VersionAbstractIn the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M.
A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Engineering [Internet]. 2021;221 (1).
Publisher's VersionAbstractIn the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Seddik M-T, KADRI O, Bouarouguene C, Brahimi H.
Detection of Flooding Attack on OBS Network Using Ant Colony Optimization and Machine Learning. Computación y Sistemas [Internet]. 2021;25 (2).
Publisher's VersionAbstractOptical burst switching (OBS) has become one of the best and widely used optical networking techniques. It offers more efficient bandwidth usage than optical packet switching (OPS) and optical circuit switching (OCS).However, it undergoes more attacks than other techniques and the Classical security approach cannot solve its security problem. Therefore, a new security approach based on machine learning and cloud computing is proposed in this article. We used the Google Colab platform to apply Support Vector Machine (SVM) and Extreme Learning Machine (ELM)to Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS) Network Data Set.
Seddik M-T, KADRI O, Bouarouguene C, Brahimi H.
Detection of Flooding Attack on OBS Network Using Ant Colony Optimization and Machine Learning. Computación y Sistemas [Internet]. 2021;25 (2).
Publisher's VersionAbstractOptical burst switching (OBS) has become one of the best and widely used optical networking techniques. It offers more efficient bandwidth usage than optical packet switching (OPS) and optical circuit switching (OCS).However, it undergoes more attacks than other techniques and the Classical security approach cannot solve its security problem. Therefore, a new security approach based on machine learning and cloud computing is proposed in this article. We used the Google Colab platform to apply Support Vector Machine (SVM) and Extreme Learning Machine (ELM)to Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS) Network Data Set.
Seddik M-T, KADRI O, Bouarouguene C, Brahimi H.
Detection of Flooding Attack on OBS Network Using Ant Colony Optimization and Machine Learning. Computación y Sistemas [Internet]. 2021;25 (2).
Publisher's VersionAbstractOptical burst switching (OBS) has become one of the best and widely used optical networking techniques. It offers more efficient bandwidth usage than optical packet switching (OPS) and optical circuit switching (OCS).However, it undergoes more attacks than other techniques and the Classical security approach cannot solve its security problem. Therefore, a new security approach based on machine learning and cloud computing is proposed in this article. We used the Google Colab platform to apply Support Vector Machine (SVM) and Extreme Learning Machine (ELM)to Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS) Network Data Set.
Seddik M-T, KADRI O, Bouarouguene C, Brahimi H.
Detection of Flooding Attack on OBS Network Using Ant Colony Optimization and Machine Learning. Computación y Sistemas [Internet]. 2021;25 (2).
Publisher's VersionAbstractOptical burst switching (OBS) has become one of the best and widely used optical networking techniques. It offers more efficient bandwidth usage than optical packet switching (OPS) and optical circuit switching (OCS).However, it undergoes more attacks than other techniques and the Classical security approach cannot solve its security problem. Therefore, a new security approach based on machine learning and cloud computing is proposed in this article. We used the Google Colab platform to apply Support Vector Machine (SVM) and Extreme Learning Machine (ELM)to Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS) Network Data Set.
AKSA K, Aitouche S, Bentoumi H, Sersa I.
Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories. Wireless Personal Communications [Internet]. 2021;119 :pages1469–1497.
Publisher's VersionAbstractIndustry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.
AKSA K, Aitouche S, Bentoumi H, Sersa I.
Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories. Wireless Personal Communications [Internet]. 2021;119 :pages1469–1497.
Publisher's VersionAbstractIndustry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.
AKSA K, Aitouche S, Bentoumi H, Sersa I.
Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories. Wireless Personal Communications [Internet]. 2021;119 :pages1469–1497.
Publisher's VersionAbstractIndustry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.
AKSA K, Aitouche S, Bentoumi H, Sersa I.
Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories. Wireless Personal Communications [Internet]. 2021;119 :pages1469–1497.
Publisher's VersionAbstractIndustry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.
Sonia B, Zermane H, Mouss L-H, Bencherif F.
Development of an Industrial Application with Neuro-Fuzzy Systems. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021;8.
Publisher's VersionAbstractIn this paper, our objective is dedicated to the detection of a deterioration in the estimated operating time by giving preventive action before a failure, and the classification of breakdowns after failure by giving the action of the diagnosis and / or maintenance. For this reason, we propose a new Neuro-fuzzy assistance prognosis system based on pattern recognition called "NFPROG" (Neuro Fuzzy Prognosis). NFPROG is an interactive simulation software, developed within the Laboratory of Automation and Production (LAP) -University of Batna, Algeria. It is a four-layer fuzzy preceptor whose architecture is based on Elman neural networks. This system is applied to the cement manufacturing process (cooking process) to the cement manufacturing company of Ain-Touta-Batna, Algeria. And since this company has an installation and configuration S7-400 of Siemens PLC PCS7was chosen as a programming language platform for our system.
Sonia B, Zermane H, Mouss L-H, Bencherif F.
Development of an Industrial Application with Neuro-Fuzzy Systems. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021;8.
Publisher's VersionAbstractIn this paper, our objective is dedicated to the detection of a deterioration in the estimated operating time by giving preventive action before a failure, and the classification of breakdowns after failure by giving the action of the diagnosis and / or maintenance. For this reason, we propose a new Neuro-fuzzy assistance prognosis system based on pattern recognition called "NFPROG" (Neuro Fuzzy Prognosis). NFPROG is an interactive simulation software, developed within the Laboratory of Automation and Production (LAP) -University of Batna, Algeria. It is a four-layer fuzzy preceptor whose architecture is based on Elman neural networks. This system is applied to the cement manufacturing process (cooking process) to the cement manufacturing company of Ain-Touta-Batna, Algeria. And since this company has an installation and configuration S7-400 of Siemens PLC PCS7was chosen as a programming language platform for our system.
Sonia B, Zermane H, Mouss L-H, Bencherif F.
Development of an Industrial Application with Neuro-Fuzzy Systems. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021;8.
Publisher's VersionAbstractIn this paper, our objective is dedicated to the detection of a deterioration in the estimated operating time by giving preventive action before a failure, and the classification of breakdowns after failure by giving the action of the diagnosis and / or maintenance. For this reason, we propose a new Neuro-fuzzy assistance prognosis system based on pattern recognition called "NFPROG" (Neuro Fuzzy Prognosis). NFPROG is an interactive simulation software, developed within the Laboratory of Automation and Production (LAP) -University of Batna, Algeria. It is a four-layer fuzzy preceptor whose architecture is based on Elman neural networks. This system is applied to the cement manufacturing process (cooking process) to the cement manufacturing company of Ain-Touta-Batna, Algeria. And since this company has an installation and configuration S7-400 of Siemens PLC PCS7was chosen as a programming language platform for our system.
Sonia B, Zermane H, Mouss L-H, Bencherif F.
Development of an Industrial Application with Neuro-Fuzzy Systems. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021;8.
Publisher's VersionAbstractIn this paper, our objective is dedicated to the detection of a deterioration in the estimated operating time by giving preventive action before a failure, and the classification of breakdowns after failure by giving the action of the diagnosis and / or maintenance. For this reason, we propose a new Neuro-fuzzy assistance prognosis system based on pattern recognition called "NFPROG" (Neuro Fuzzy Prognosis). NFPROG is an interactive simulation software, developed within the Laboratory of Automation and Production (LAP) -University of Batna, Algeria. It is a four-layer fuzzy preceptor whose architecture is based on Elman neural networks. This system is applied to the cement manufacturing process (cooking process) to the cement manufacturing company of Ain-Touta-Batna, Algeria. And since this company has an installation and configuration S7-400 of Siemens PLC PCS7was chosen as a programming language platform for our system.
Benfriha A-I, Triqui-Sari L, Bougloula A-E, Bennekrouf M.
Dynamic planning design of three level distribution network with horizontal and vertical exchange. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. 2021.
Abstract Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.
Benfriha A-I, Triqui-Sari L, Bougloula A-E, Bennekrouf M.
Dynamic planning design of three level distribution network with horizontal and vertical exchange. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. 2021.
Abstract Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.
Benfriha A-I, Triqui-Sari L, Bougloula A-E, Bennekrouf M.
Dynamic planning design of three level distribution network with horizontal and vertical exchange. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. 2021.
Abstract Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.
Benfriha A-I, Triqui-Sari L, Bougloula A-E, Bennekrouf M.
Dynamic planning design of three level distribution network with horizontal and vertical exchange. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. 2021.
Abstract Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.