Parametric Study of Shallow Tunnel Under Seismic Conditions for Constantine Motorway Tunnel, Algeria

Citation:

Aicha B, Mezhoud S, Tayeb B, Toufik K, Abdelkader N. Parametric Study of Shallow Tunnel Under Seismic Conditions for Constantine Motorway Tunnel, Algeria. Geotechnical and Geological Engineering [Internet]. 2022 :1-12.

Date Published:

2022

Abstract:

When designing tunnels, it is advisable to pre-estimate several tunnel parameters such as the depth (cover), the lining thickness, and the shape of the tunnel cross section. This condition is important in order to limit deformations during construction of the tunnel, and to ensure good tunnel resistance under seismic load conditions. In this context, the present paper is devoted to the analysis of the influence of some test parameters (the cover of the tunnel, the thickness of the lining, and the shape of the tunnel and the direction of the seismic waves) on the behaviour of the soil and the lining of a shallow tunnel built in soft ground subjected to seismic loading. The reference model for this parametric study is a real case, which happens to be the tunnel of Djebel El Ouahch (East-West motorway) in the province of Constantine/Algeria. The study is performed in three dimensions (3D) using a finite difference calculation method based on the FLAC3D calculation code. The results are presented in terms of shear strain induced in the soil around the tunnel, surface settlement, and vertical displacement of soil under the raft foundation, and also shear stress, bending moment, and shear strain, induced in the tunnel lining. The results show that the increase in thickness of the lining causes a reduction in shear force, and shear strain, while the circular or oval shape of the tunnel cross section results in low values of strain in the lining and ground displacement. It has been also pointed out that bending moment and shear strain induced in the lining are relatively low in comparison with the other forms. On the other hand, the direction of the seismic waves has a great influence on the behaviour of the lining and the surrounding soil. These results demonstrate that the strongest and most stable tunnel is the deepest tunnel with circular or oval section with a large thickness of the tunnel lining under the effect of compressive seismic waves. The results of the present study will be useful in the design of such a case by understanding the effects of various influencing parameters that control the stability of the tunnel in soil with bad characteristics.

Publisher's Version

Last updated on 04/20/2022