A Robust Voltage H∞ Controller in DG-Connected Inverter Based on Auto-Calibration of Adjustable Fractional Weights


In this paper a H∞ control technique addresses the voltage regulation in distributed generation (DG) system connected to power converter under harmonic disturbances. The DG control technique combines a discrete sliding mode control (DSMC) in the current control and a Robust Servomechanism Problem (RSP) in the voltage control. Besides, a fractional Order Proportional-Integral-Derivative (FOPID) controller synthesized with an automatic calibration of adjustable fractional weights is formulated in this work. For performance and high robustness requirements, the parameters of FOPID are optimized through solving a multiobjective optimization problematic based on the automatic calibration of the weighted-mixed sensitivity problem. Furthermore, for ensuring an adequate calibration of parameters, the Integral of Time Weighted Absolute Error (ITAE) criterion with Genetic Algorithm (GA) are used to achieve better voltage regulation. The simulation results show that it can achieve trade-off between nominal performance (NP) and robust stability (RS) margins for the constrained uncertain plants in the large range frequencies. Also, the results validate the effectiveness of the proposed control at which both low total harmonic distortion (THD) and low tracking error.

Publisher's Version

Last updated on 04/21/2022