Citation:
Abstract:
This paper deals with the design and optimization of a 1.2 MVA medium-voltage (MV) power electronic traction transformer (PETT) for an AC 15 kV/16.7 Hz railway grid, in which a simple two-stage multi-cell PETT topology consisting of a bidirectional 170 kW, 2.5 kV AC rms to 6 kV DC power factor corrected (PFC) converter stage followed by a bidirectional isolated 46 kHz, 6 kV to 1.5 kV series resonant DC/DC converter for each cell is presented. This paper presents a methodology that maximizes the converter"s efficiency and minimizes the converter"s size and weight. Accordingly, the first stage employs 10 kV SiC MOSFETs based on the integrated Triangular Current Mode (iTCM). The second stage uses 10 kV SiC MOSFETs on the MV-side, 3.3 kV SiC MOSFETs on the LV-side, and a medium frequency (MF) MV transformer operating at 46 kHz. MF transformers offer a way to reduce weight and improve energy efficiency, particularly in electric multiple-unit applications. The MF MV transformer requires power electronic converters, which invert and rectify the voltages and currents at the desired operating frequency. The development of high voltage SiC MOSFETs, which can be used instead of Si IGBTs in PETT topologies, increases the operating frequency without reducing the converter"s efficiency. The designed MV PETT achieves 98.95% efficiency and 0.76 kVA/kg power density.