Publications by Author: Mourad Brioua

2022
YOUSFI H, Brioua M, Benbouta R. STUDY AND PREDICTION OF THE FATIGUE LIFE OF AISI 1045 STEEL STRUCTURES UNDER ROTATIONAL BENDING STRESSES. UPB scientific bulletin series d mechanical engineering [Internet]. 2022;84 (2). Publisher's VersionAbstract

Several difficulties and critical problems are facing the modern designers especially the unexpected damages. For such critical issues, the steel behavior’s investigation presents a significant point to predict fatigue life through avoiding sudden damage. An experimental study has been conducted to evaluate the AISI 1045 steel fatigue behavior using three specimens’ shapes: the first one is the conventional shape according to the ASTM E466-07 standard, the second one is performed in a notched shape, and the last specimen according to the pre-loading process. To complete the comparison among the three cases studied, a mandatory checking of the chemical compositions such as carbon content 0.45%, as well as the mechanical properties, have been investigated by preformed a tensile test in order to determine the maximum stress and the yield strength. The staircase method is employed to estimate and compare the endurance limit and its standard deviations for the three shapes. Moreover, and considered that the fatigue life expectancy of the AISI 1045 steel is a crucial step, the Stromeyer model has been proposed to predict the fatigue life which appears to be more effective, considering the average error for all cases compared to the experimental model.

Selloum R, Ameddah H, Brioua M. Computer Aided Inspection by Reverse Engineering for Reproduction of Gear Teeth, in International Conference on Advanced Materials Mechanics & Manufacturing. Advances in Mechanical Engineering and Mechanics II ; 2022 :292–298. Publisher's VersionAbstract
In the industry, automated inspection is important for ensuring the high quality and allows acceleration of procedures for quality control of parts or mechanical assemblies. Although significant progress has been made in precision machining of complex surfaces, precision inspection of such surfaces remains a difficult problem. Thus the problem of the conformity of the parts of complex geometry is felt more and more. Motivated by the need to increase quality and reduce costs, and supported by the progress made in the field of it as well as the automation of production which in recent years has seen a considerable evolution in all these stages: from design to control through manufacturing. Due to, we used a 3D computer aided inspection technique on a physical gear using a coordinate measuring machine equipped with a “PC-DMIS” measurement and inspection software. Our work consists in developing a procedure for inspection for reproduction of gear profile by reconstruction of a circle involute gear from a cloud point’s measurement. In order to obtain a reliable result. In this works, we design the CAD-model of the part as accurately as possible (using a mathematical model) and matched with the 3D points cloud that represents the measurement that obtained from scanner. we compare the measurement cloud points from coordinate measurement machine with the mathematical model of construction by ICP (Iterative Closest Point) methods in order to obtain a conformed result and to show the impact of the dimensional inspection and geometric.
2021
Selloum R, Ameddah H, Brioua M. Computer Aided Inspection by Reverse Engineering for Reproduction of Gear Teeth. 5th Tunisian Congress on Mechanics  COTUME 2020  22 au 24 Mars [Internet]. 2021. Publisher's VersionAbstract

In the industry, automated inspection is important for ensuring the high quality and allows acceleration of procedures for quality control of parts or mechanical assemblies. Although significant progress has been made in precision machining of complex surfaces, precision inspection of such surfaces remains a difficult problem. Thus the problem of the conformity of the parts of complex geometry is felt more and more. Motivated by the need to increase quality and reduce costs, and supported by the progress made in the field of it as well as the automation of production which in recent years has seen a considerable evolution in all these stages: from design to control through manufacturing. Due to, we used a 3D computer aided inspection technique on a physical gear using a coordinate measuring machine equipped with a “PC-DMIS” measurement and inspection software. Our work consists in developing a procedure for inspection for reproduction of gear profile by reconstruction of a circle involute gear from a cloud point’s measurement. In order to obtain a reliable result. In this works, we design the CAD-model of the part as accurately as possible (using a mathematical model) and matched with the 3D points cloud that represents the measurement that obtained from scanner. we compare the measurement cloud points from coordinate measurement machine with the mathematical model of construction by ICP (Iterative Closest Point) methods in order to obtain a conformed result and to show the impact of the dimensional inspection and geometric.

Ameddah H, Selloum R, Brioua M. Inspection on a Three-Dimensional Measuring Machine for a Virtual Model for Additive Manufacturing, in International Conference on Advances in Mechanical Engineering and Mechanics. Advances in Mechanical Engineering, Materials and Mechanics ; 2021 :138–143. Publisher's VersionAbstract
Today, and to quickly meet the high demands of variability, supply chain efficiency and energy optimization, business markets are looking for modern manufacturing technologies and as a solution, industry 4.0 is using the benefits of integrating modern manufacturing technologies and information systems to promote production capabilities. In this context, intelligent industry represents a new generation of automatic production systems based on the concepts of intelligent industry, intelligent manufacturing, control and intelligent inspection, such as inspection on coordinate measuring machines (CMMs). This technology allows many machines to be integrated into a plant and controlled online using the MBD (Model Based Design) quality system. The problem of conformity of parts with complex geometry is becoming more and more important. The objective of this work is to present a 3D inspection technique on a virtual model (MBD: Model Based Design), using a coordinate measuring machine equipped with a “POWER INSPECT” measurement and inspection software. The interest of this technique is to show the impact of the dimensional inspection and geometric tolerance process of the CAD model for the CAI (Computer aided Inspection) approach on the fidelity of the finished product for additive manufacturing (AM) including intelligent industry.
Selloum R, Ameddah H, Brioua M. Computer Aided Inspection by Reverse Engineering for Reproduction of Gear Teeth. International Conference on Advanced Materials Mechanics & Manufacturing [Internet]. 2021 :292-298. Publisher's VersionAbstract
In the industry, automated inspection is important for ensuring the high quality and allows acceleration of procedures for quality control of parts or mechanical assemblies. Although significant progress has been made in precision machining of complex surfaces, precision inspection of such surfaces remains a difficult problem. Thus the problem of the conformity of the parts of complex geometry is felt more and more. Motivated by the need to increase quality and reduce costs, and supported by the progress made in the field of it as well as the automation of production which in recent years has seen a considerable evolution in all these stages: from design to control through manufacturing. Due to, we used a 3D computer aided inspection technique on a physical gear using a coordinate measuring machine equipped with a “PC-DMIS” measurement and inspection software. Our work consists in developing a procedure for inspection for reproduction of gear profile by reconstruction of a circle involute gear from a cloud point’s measurement. In order to obtain a reliable result. In this works, we design the CAD-model of the part as accurately as possible (using a mathematical model) and matched with the 3D points cloud that represents the measurement that obtained from scanner. we compare the measurement cloud points from coordinate measurement machine with the mathematical model of construction by ICP (Iterative Closest Point) methods in order to obtain a conformed result and to show the impact of the dimensional inspection and geometric.
2020
Bendifallah M, Brioua M, Belloufi A. CUTTING TOOL LIFE AND ITS EFFECT ON SURFACE ROUGHNESS WHEN TURNING WITH WC-6% CO. International Journal of Modern Manufacturing Technologies [Internet]. 2020;XII (2). Publisher's VersionAbstract
During turning operations, tool-part-chip contact causes wear to the cutting tool. The objective of this work is to study the wear of the clearance faces of tungsten carbide cutting tools during turning operations. Experimental tests on tool life for dry turning operations were carried out at four different cutting speeds, where the feed rate and the depth of cut are kept at constant values: 0.08 mm/rev for feed rate and 0.5 mm for depth of cut. An analysis of the influence of cutting parameters on the tools wear and consequently tool life (Τ) was presented, then the roughness of the machined surface Ra and the morphology of the chips produced were studied. This study makes it possible to identify that the wear mechanisms and the tool life are strongly linked to the roughness of the machined surfaces and to the morphology of the chips produced during the turning operations.
Selloum R, Ameddah H, Brioua M. Improvement Inspection Method for Rapid Prototyping of an involute spur gears for an Additive Manufacturing process. International Conference on 3D Printing and Additive Manufacturing November 23-24, Webinar, From your imagination to a 3D model. 2020.
Ameddah H, Selloum R, Brioua M. Inspection on a Three-Dimensional Measuring Machine for a Virtual Model for Additive Manufacturing, in International Conference on Advances in Mechanical Engineering and Mechanics. Advances in Mechanical Engineering, Materials and Mechanics ; 2020 :138–143. Publisher's VersionAbstract
Today, and to quickly meet the high demands of variability, supply chain efficiency and energy optimization, business markets are looking for modern manufacturing technologies and as a solution, industry 4.0 is using the benefits of integrating modern manufacturing technologies and information systems to promote production capabilities. In this context, intelligent industry represents a new generation of automatic production systems based on the concepts of intelligent industry, intelligent manufacturing, control and intelligent inspection, such as inspection on coordinate measuring machines (CMMs). This technology allows many machines to be integrated into a plant and controlled online using the MBD (Model Based Design) quality system. The problem of conformity of parts with complex geometry is becoming more and more important. The objective of this work is to present a 3D inspection technique on a virtual model (MBD: Model Based Design), using a coordinate measuring machine equipped with a “POWER INSPECT” measurement and inspection software. The interest of this technique is to show the impact of the dimensional inspection and geometric tolerance process of the CAD model for the CAI (Computer aided Inspection) approach on the fidelity of the finished product for additive manufacturing (AM) including intelligent industry.
Selloum R, Ameddah H, Brioua M. Inspection sur une machine à mesurer tridimensionnelle en vue d’un tolérancement d’un modèle virtuel pour la fabrication additive,. Congres Algérien de Mécanique CAM2019 Ghardaia 23-26 Février. 2020.
Selloum R, Ameddah H, Brioua M. Non-Destructive Evaluation for an Exactitude Reproduction of Form by Reverse Engineering in an Additive Manufacturing Process. ASTM International Conference on Additive Manufacturing ICAM2020, November 16-20, Webinar. 2020.
Ameddah H, Brioua M. OPTIMAL SHAPE REPRODUCTION OF AN INTERVERTEBRAL PROSTHESIS “COFLEX” FOR ADDITIVE MANUFACTURING, in 7th International Conference Integrity-Reliability-Failure. J.F. Silva Gomes and S.A. Meguid (editors), INEGI-FEUP ; 2020 :487-488. Publisher's VersionAbstract
The coflex Interlaminar Technology is an interlaminar stabilization device indicated for use in one or two level lumbar stenosis from L1-L5. It is used in skeletally mature patients with at least moderate impairment in function who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least 6 months of non-operative treatment. Our study is focused on the evaluation and biomechanical analysis of osteosynthesis implants and in particular the Corflex-F implant to redefine a new approach to the "Coflex" interspinatus implant using particles swarm optimisation for additive manufacturing, then to study these biomechanical performances.
Amaddah H, Brioua M. Optimal shape reproduction of an intervertebral prosthesis “COFLEX” for additive manufacturing. 7th International Conference Integrity-Reliability-Failure. J.F. Silva Gomes and S.A. Meguid (editors), INEGI-FEUP (2020),. 2020 :487-488.
Bendifallah M, Brioua M, Belloufi A. Cutting Tool Life And Its Effect On Surface Roughness When Turning With WC-6% CO. International Journal of Modern Manufacturing TechnologiesInternational Journal of Modern Manufacturing Technologies. 2020;12 :7-16.
Ameddah H, Brioua M. OPTIMAL SHAPE REPRODUCTION OF AN INTERVERTEBRAL PROSTHESIS “COFLEX” FOR ADDITIVE MANUFACTURING. 2020.
2019
Ameddah H, Selloum R, Brioua M. Inspection on a Three-Dimensional Measuring Machine for a Virtual Model for Additive Manufacturing. International Conference on Advances in Mechanical Engineering and Mechanics. 2019 :138-143.
2017
Boukhobza A, Brioua M, Benaicha S, FEDAOUI K. Biomechanical Characterization of Failure the 316L Stainless Steel for Femoral Compression Plates. Journal of Biomimetics, Biomaterials and Biomedical EngineeringJournal of Biomimetics, Biomaterials and Biomedical Engineering. 2017;34 :68-74.
Boukhobza A, Brioua M, Benaicha S, FEDAOUI K. Biomechanical Characterization of Failure the 316L Stainless Steel for Femoral Compression Plates. Journal of Biomimetics, Biomaterials and Biomedical Engineering [Internet]. 2017;34 :68-74. Publisher's VersionAbstract

The aim of this paper is to examine a premature breakage of two compression plates for fixing broken bones with different patients for the period of their recovery. Each compression plate's breakage can induce grave consequences such as a new surgery, unexpected undesired complications and a prolonged healing time. The investigation of the compression plate breakage causes required an examination of the chemical composition and steel hardness, metallographic examination as well as that of the compression plate breakage surface by means of macroscopic and microscopic observations using microscope. On the origin of the results it can be established that the breakage was caused by high static load.

Chermime B, Abboudi A, Djebaili H, Brioua M. Characterisation of Mo–V–N Coatings Deposited on XC100 Substrate by Sputtering Cathodic Magnetron. Металлофизика и новейшие технологииМеталлофизика и новейшие технологии. 2017.
Chermime B, Abboudi A, Djebaili H, Brioua M. Characterisation of Mo–V–N Coatings Deposited on XC100 Substrate by Sputtering Cathodic Magnetron. Металлофизика и новейшие технологииМеталлофизика и новейшие технологии. 2017.
Abboudi A, Chermime B, Djebaili H, Brioua M. Characterization of the Microstructural and Mechanical Properties of MoZrN Coating. Journal of Nano-and Electronic PhysicsJournal of Nano-and Electronic Physics. 2017;9 :1014-1.

Pages