2022
Lahmar H, Dahane M, Mouss N-K, Haoues M.
Multi-objective production planning of new and remanufactured products in hybrid production system. 10th IFAC Conference Onmanufacturing Modelling, Management And Control 22-24 June. 2022.
Lahmar H, Dahane M, Mouss N-K, Haoues M.
Multi-objective production planning of new and remanufactured products in hybrid production system. 10th IFAC Conference Onmanufacturing Modelling, Management And Control 22-24 June. 2022.
Soltani M, Aouag H, Mouss M-D.
A multiple criteria decision-making improvement strategy in complex manufacturing processes. International Journal of Operational Research [Internet]. 2022;45 (2).
Publisher's VersionAbstractThe purpose of this paper is to propose an improvement strategy based on multi-criteria decision making approaches, including fuzzy analytic hierarchy process (AHP), preference ranking organisation method for enrichment evaluation II (PROMETHEE) and vi\v sekriterijumsko kompromisno rangiranje (VIKOR) for the objective of simplifying and organising the improvement process in complex manufacturing processes. Firstly, the proposed strategy started with the selection of decision makers’, such as company leaders, to determine performance indicators. Then fuzzy AHP is used to quantify the weight of each defined indicators. Finally, the weights carried out from fuzzy AHP approach are used as input in VIKOR and PROMETHE II to rank the operations according to their improvement priority. The results obtained from each outranking method are compared and the best method is determined.
Soltani M, Aouag H, Mouss M-D.
A multiple criteria decision-making improvement strategy in complex manufacturing processes. International Journal of Operational Research [Internet]. 2022;45 (2).
Publisher's VersionAbstractThe purpose of this paper is to propose an improvement strategy based on multi-criteria decision making approaches, including fuzzy analytic hierarchy process (AHP), preference ranking organisation method for enrichment evaluation II (PROMETHEE) and vi\v sekriterijumsko kompromisno rangiranje (VIKOR) for the objective of simplifying and organising the improvement process in complex manufacturing processes. Firstly, the proposed strategy started with the selection of decision makers’, such as company leaders, to determine performance indicators. Then fuzzy AHP is used to quantify the weight of each defined indicators. Finally, the weights carried out from fuzzy AHP approach are used as input in VIKOR and PROMETHE II to rank the operations according to their improvement priority. The results obtained from each outranking method are compared and the best method is determined.
Soltani M, Aouag H, Mouss M-D.
A multiple criteria decision-making improvement strategy in complex manufacturing processes. International Journal of Operational Research [Internet]. 2022;45 (2).
Publisher's VersionAbstractThe purpose of this paper is to propose an improvement strategy based on multi-criteria decision making approaches, including fuzzy analytic hierarchy process (AHP), preference ranking organisation method for enrichment evaluation II (PROMETHEE) and vi\v sekriterijumsko kompromisno rangiranje (VIKOR) for the objective of simplifying and organising the improvement process in complex manufacturing processes. Firstly, the proposed strategy started with the selection of decision makers’, such as company leaders, to determine performance indicators. Then fuzzy AHP is used to quantify the weight of each defined indicators. Finally, the weights carried out from fuzzy AHP approach are used as input in VIKOR and PROMETHE II to rank the operations according to their improvement priority. The results obtained from each outranking method are compared and the best method is determined.
Mebarki N, Benmoussa S, Djeziri M, Mouss L{\"ıla-H.
New Approach for Failure Prognosis Using a Bond Graph, Gaussian Mixture Model and Similarity Techniques. Processes [Internet]. 2022;10 (3).
Publisher's VersionAbstractThis paper proposes a new approach for remaining useful life prediction that combines a bond graph, the Gaussian Mixture Model and similarity techniques to allow the use of both physical knowledge and the data available. The proposed method is based on the identification of relevant variables that carry information on degradation. To this end, the causal properties of the bond graph (BG) are first used to identify the relevant sensors through the fault observability. Then, a second stage of analysis based on statistical metrics is performed to reduce the number of sensors to only the ones carrying useful information for failure prognosis, thus, optimizing the data to be used in the prognosis phase. To generate data in the different system state, a simulator based on the developed BG is used. A Gaussian Mixture Model is then applied on the generated data for fault diagnosis and clustering. The Remaining Useful Life is estimated using a similarity technique. An application on a mechatronic system is considered for highlighting the effectiveness of the proposed approach.
Mebarki N, Benmoussa S, Djeziri M, Mouss L{\"ıla-H.
New Approach for Failure Prognosis Using a Bond Graph, Gaussian Mixture Model and Similarity Techniques. Processes [Internet]. 2022;10 (3).
Publisher's VersionAbstractThis paper proposes a new approach for remaining useful life prediction that combines a bond graph, the Gaussian Mixture Model and similarity techniques to allow the use of both physical knowledge and the data available. The proposed method is based on the identification of relevant variables that carry information on degradation. To this end, the causal properties of the bond graph (BG) are first used to identify the relevant sensors through the fault observability. Then, a second stage of analysis based on statistical metrics is performed to reduce the number of sensors to only the ones carrying useful information for failure prognosis, thus, optimizing the data to be used in the prognosis phase. To generate data in the different system state, a simulator based on the developed BG is used. A Gaussian Mixture Model is then applied on the generated data for fault diagnosis and clustering. The Remaining Useful Life is estimated using a similarity technique. An application on a mechatronic system is considered for highlighting the effectiveness of the proposed approach.
Mebarki N, Benmoussa S, Djeziri M, Mouss L{\"ıla-H.
New Approach for Failure Prognosis Using a Bond Graph, Gaussian Mixture Model and Similarity Techniques. Processes [Internet]. 2022;10 (3).
Publisher's VersionAbstractThis paper proposes a new approach for remaining useful life prediction that combines a bond graph, the Gaussian Mixture Model and similarity techniques to allow the use of both physical knowledge and the data available. The proposed method is based on the identification of relevant variables that carry information on degradation. To this end, the causal properties of the bond graph (BG) are first used to identify the relevant sensors through the fault observability. Then, a second stage of analysis based on statistical metrics is performed to reduce the number of sensors to only the ones carrying useful information for failure prognosis, thus, optimizing the data to be used in the prognosis phase. To generate data in the different system state, a simulator based on the developed BG is used. A Gaussian Mixture Model is then applied on the generated data for fault diagnosis and clustering. The Remaining Useful Life is estimated using a similarity technique. An application on a mechatronic system is considered for highlighting the effectiveness of the proposed approach.
Mebarki N, Benmoussa S, Djeziri M, Mouss L{\"ıla-H.
New Approach for Failure Prognosis Using a Bond Graph, Gaussian Mixture Model and Similarity Techniques. Processes [Internet]. 2022;10 (3).
Publisher's VersionAbstractThis paper proposes a new approach for remaining useful life prediction that combines a bond graph, the Gaussian Mixture Model and similarity techniques to allow the use of both physical knowledge and the data available. The proposed method is based on the identification of relevant variables that carry information on degradation. To this end, the causal properties of the bond graph (BG) are first used to identify the relevant sensors through the fault observability. Then, a second stage of analysis based on statistical metrics is performed to reduce the number of sensors to only the ones carrying useful information for failure prognosis, thus, optimizing the data to be used in the prognosis phase. To generate data in the different system state, a simulator based on the developed BG is used. A Gaussian Mixture Model is then applied on the generated data for fault diagnosis and clustering. The Remaining Useful Life is estimated using a similarity technique. An application on a mechatronic system is considered for highlighting the effectiveness of the proposed approach.
Haouassi H, Haouassi H, Mehdaoui R, Maarouk TM, Chouhal O.
A new binary grasshopper optimization algorithm for feature selection problem. Journal of King Saud University - Computer and Information Sciences [Internet]. 2022;34 (2).
Publisher's VersionAbstractThe grasshopper optimization algorithm is one of the recently population-based optimization techniques inspired by the behaviours of grasshoppers in nature. It is an efficient optimization algorithm and since demonstrates excellent performance in solving continuous problems, but cannot resolve directly binary optimization problems. Many optimization problems have been modelled as binary problems since their decision variables varied in binary space such as feature selection in data classification. The main goal of feature selection is to find a small size subset of feature from a sizeable original set of features that optimize the classification accuracy. In this paper, a new binary variant of the grasshopper optimization algorithm is proposed and used for the feature subset selection problem. This proposed new binary grasshopper optimization algorithm is tested and compared to five well-known swarm-based algorithms used in feature selection problem. All these algorithms are implemented and experimented assessed on twenty data sets with various sizes. The results demonstrated that the proposed approach could outperform the other tested methods.
Haouassi H, Haouassi H, Mehdaoui R, Maarouk TM, Chouhal O.
A new binary grasshopper optimization algorithm for feature selection problem. Journal of King Saud University - Computer and Information Sciences [Internet]. 2022;34 (2).
Publisher's VersionAbstractThe grasshopper optimization algorithm is one of the recently population-based optimization techniques inspired by the behaviours of grasshoppers in nature. It is an efficient optimization algorithm and since demonstrates excellent performance in solving continuous problems, but cannot resolve directly binary optimization problems. Many optimization problems have been modelled as binary problems since their decision variables varied in binary space such as feature selection in data classification. The main goal of feature selection is to find a small size subset of feature from a sizeable original set of features that optimize the classification accuracy. In this paper, a new binary variant of the grasshopper optimization algorithm is proposed and used for the feature subset selection problem. This proposed new binary grasshopper optimization algorithm is tested and compared to five well-known swarm-based algorithms used in feature selection problem. All these algorithms are implemented and experimented assessed on twenty data sets with various sizes. The results demonstrated that the proposed approach could outperform the other tested methods.
Haouassi H, Haouassi H, Mehdaoui R, Maarouk TM, Chouhal O.
A new binary grasshopper optimization algorithm for feature selection problem. Journal of King Saud University - Computer and Information Sciences [Internet]. 2022;34 (2).
Publisher's VersionAbstractThe grasshopper optimization algorithm is one of the recently population-based optimization techniques inspired by the behaviours of grasshoppers in nature. It is an efficient optimization algorithm and since demonstrates excellent performance in solving continuous problems, but cannot resolve directly binary optimization problems. Many optimization problems have been modelled as binary problems since their decision variables varied in binary space such as feature selection in data classification. The main goal of feature selection is to find a small size subset of feature from a sizeable original set of features that optimize the classification accuracy. In this paper, a new binary variant of the grasshopper optimization algorithm is proposed and used for the feature subset selection problem. This proposed new binary grasshopper optimization algorithm is tested and compared to five well-known swarm-based algorithms used in feature selection problem. All these algorithms are implemented and experimented assessed on twenty data sets with various sizes. The results demonstrated that the proposed approach could outperform the other tested methods.
Haouassi H, Haouassi H, Mehdaoui R, Maarouk TM, Chouhal O.
A new binary grasshopper optimization algorithm for feature selection problem. Journal of King Saud University - Computer and Information Sciences [Internet]. 2022;34 (2).
Publisher's VersionAbstractThe grasshopper optimization algorithm is one of the recently population-based optimization techniques inspired by the behaviours of grasshoppers in nature. It is an efficient optimization algorithm and since demonstrates excellent performance in solving continuous problems, but cannot resolve directly binary optimization problems. Many optimization problems have been modelled as binary problems since their decision variables varied in binary space such as feature selection in data classification. The main goal of feature selection is to find a small size subset of feature from a sizeable original set of features that optimize the classification accuracy. In this paper, a new binary variant of the grasshopper optimization algorithm is proposed and used for the feature subset selection problem. This proposed new binary grasshopper optimization algorithm is tested and compared to five well-known swarm-based algorithms used in feature selection problem. All these algorithms are implemented and experimented assessed on twenty data sets with various sizes. The results demonstrated that the proposed approach could outperform the other tested methods.
Haouassi H, Haouassi H, Mehdaoui R, Maarouk TM, Chouhal O.
A new binary grasshopper optimization algorithm for feature selection problem. Journal of King Saud University - Computer and Information Sciences [Internet]. 2022;34 (2).
Publisher's VersionAbstractThe grasshopper optimization algorithm is one of the recently population-based optimization techniques inspired by the behaviours of grasshoppers in nature. It is an efficient optimization algorithm and since demonstrates excellent performance in solving continuous problems, but cannot resolve directly binary optimization problems. Many optimization problems have been modelled as binary problems since their decision variables varied in binary space such as feature selection in data classification. The main goal of feature selection is to find a small size subset of feature from a sizeable original set of features that optimize the classification accuracy. In this paper, a new binary variant of the grasshopper optimization algorithm is proposed and used for the feature subset selection problem. This proposed new binary grasshopper optimization algorithm is tested and compared to five well-known swarm-based algorithms used in feature selection problem. All these algorithms are implemented and experimented assessed on twenty data sets with various sizes. The results demonstrated that the proposed approach could outperform the other tested methods.
Bouzenita M, Mouss L-H, Melgani F, Bentrcia T.
New fusion frameworks including explicit weighting functions for the remaining useful life prognostics. Expert Systems with Applications [Internet]. 2022;189 (1).
Publisher's VersionAbstract
In the last recent years, a large community of researchers and industrial practitioners has been attracted by combining different prognostics models as such strategy results in boosted accuracy and robust performance compared to the exploitation of single models. The present work is devoted to the investigation of three new fusion schemes for the remaining useful life forecast. These integrated frameworks are based on aggregating a set of Gaussian process regression models thanks to the Induced Ordered Weighted Averaging Operators. The combination procedure is built upon three proposed analytical weighting schemes including exponential, logarithmic and inverse functions. In addition, the uncertainty aspect is supported in this work, where the proposed functions are used to weighted average the variances released from competitive Gaussian process regression models. The training data are transformed into gradient values, which are adopted as new training data instead of the original observations. A lithium-ion battery data set is used as a benchmark to prove the efficiency of the proposed weighting schemes. The obtained results are promising and may provide some guidelines for future advances in performing robust fusion options to accurately estimate the remaining useful life.
Bouzenita M, Mouss L-H, Melgani F, Bentrcia T.
New fusion frameworks including explicit weighting functions for the remaining useful life prognostics. Expert Systems with Applications [Internet]. 2022;189 (1).
Publisher's VersionAbstract
In the last recent years, a large community of researchers and industrial practitioners has been attracted by combining different prognostics models as such strategy results in boosted accuracy and robust performance compared to the exploitation of single models. The present work is devoted to the investigation of three new fusion schemes for the remaining useful life forecast. These integrated frameworks are based on aggregating a set of Gaussian process regression models thanks to the Induced Ordered Weighted Averaging Operators. The combination procedure is built upon three proposed analytical weighting schemes including exponential, logarithmic and inverse functions. In addition, the uncertainty aspect is supported in this work, where the proposed functions are used to weighted average the variances released from competitive Gaussian process regression models. The training data are transformed into gradient values, which are adopted as new training data instead of the original observations. A lithium-ion battery data set is used as a benchmark to prove the efficiency of the proposed weighting schemes. The obtained results are promising and may provide some guidelines for future advances in performing robust fusion options to accurately estimate the remaining useful life.
Bouzenita M, Mouss L-H, Melgani F, Bentrcia T.
New fusion frameworks including explicit weighting functions for the remaining useful life prognostics. Expert Systems with Applications [Internet]. 2022;189 (1).
Publisher's VersionAbstract
In the last recent years, a large community of researchers and industrial practitioners has been attracted by combining different prognostics models as such strategy results in boosted accuracy and robust performance compared to the exploitation of single models. The present work is devoted to the investigation of three new fusion schemes for the remaining useful life forecast. These integrated frameworks are based on aggregating a set of Gaussian process regression models thanks to the Induced Ordered Weighted Averaging Operators. The combination procedure is built upon three proposed analytical weighting schemes including exponential, logarithmic and inverse functions. In addition, the uncertainty aspect is supported in this work, where the proposed functions are used to weighted average the variances released from competitive Gaussian process regression models. The training data are transformed into gradient values, which are adopted as new training data instead of the original observations. A lithium-ion battery data set is used as a benchmark to prove the efficiency of the proposed weighting schemes. The obtained results are promising and may provide some guidelines for future advances in performing robust fusion options to accurately estimate the remaining useful life.
Bouzenita M, Mouss L-H, Melgani F, Bentrcia T.
New fusion frameworks including explicit weighting functions for the remaining useful life prognostics. Expert Systems with Applications [Internet]. 2022;189 (1).
Publisher's VersionAbstract
In the last recent years, a large community of researchers and industrial practitioners has been attracted by combining different prognostics models as such strategy results in boosted accuracy and robust performance compared to the exploitation of single models. The present work is devoted to the investigation of three new fusion schemes for the remaining useful life forecast. These integrated frameworks are based on aggregating a set of Gaussian process regression models thanks to the Induced Ordered Weighted Averaging Operators. The combination procedure is built upon three proposed analytical weighting schemes including exponential, logarithmic and inverse functions. In addition, the uncertainty aspect is supported in this work, where the proposed functions are used to weighted average the variances released from competitive Gaussian process regression models. The training data are transformed into gradient values, which are adopted as new training data instead of the original observations. A lithium-ion battery data set is used as a benchmark to prove the efficiency of the proposed weighting schemes. The obtained results are promising and may provide some guidelines for future advances in performing robust fusion options to accurately estimate the remaining useful life.
Lahmar H, Dahane M, Mouss N-K, Haoues M.
Production planning optimisation in a sustainable hybrid manufacturing remanufacturing production system, in
3rd International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science 200. ScienceDirect ; 2022.
Publisher's VersionAbstract
In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.
Lahmar H, Dahane M, Mouss N-K, Haoues M.
Production planning optimisation in a sustainable hybrid manufacturing remanufacturing production system. Procedia Computer Science [Internet]. 2022;200 :1244-1253.
Publisher's VersionAbstractIn this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.