2019
Beghoul M, Demagh R.
Slurry Shield Tunneling in Soft Ground-Comparison between Field Data and 3D Numerical Simulation. Studia Geotechnica et Mechanica [Internet]. 2019;41 (3) :115 - 128.
Publisher's VersionAbstractIn urban areas, the control of ground surface settlement is an important issue during shield tunnel-boring machine (TBM) tunneling. These ground movements are affected by many machine control parameters. In this article, a finite difference (FD) model is developed using Itasca FLAC-3D to numerically simulate the whole process of shield TBM tunneling. The model simulates important components of the mechanized excavation process including slurry pressure on the excavation face, shield conicity, installation of segmental lining, grout injection in the annular void, and grout consolidation. The analysis results from the proposed method are compared and discussed in terms of ground movements (both vertical and horizontal) with field measurements data. The results reveal that the proposed 3D simulation is sufficient and can reasonably reproduce all the operations achieved by the TBM. In fact, the results show that the TBM parameters can be controlled to have acceptable levels of surface settlement. In particular, it seems that moderate face pressure can reduce ground movement significantly and, most importantly, can prevent the occurrence of face-expected instability when the shield crosses very weak soil layers. The shield conicity has also an important effect on ground surface settlement, which can be partly compensated by the grout pressure during tail grouting. Finally, the injection pressure at the rear of the shield significantly reduces the vertical displacements at the crown of the tunnel and, therefore, reduces the settlement at the ground surface.
Rouabhi R, Abdessemed R, Abdelghafour H, Moustafad B.
Comparative Study Between Two Control Techniques Applied on the Permanent Magnet Synchronous Machine (PMSM). Advances in Modelling and Analysis C [Internet]. 2019;74 :51-58.
Publisher's VersionAbstractIn this article, we present a comparative study between two control techniques applied on the Permanent Magnet Synchronous Machine (PMSM), namely vector control and fuzzy logic. This comparison is based on three criteria: qualitative, quantitative and robust during the transient and permanent operation of the system. The latter comprises a machine is driven through the stator variables by two bidirectional converters. In the first part, we have presented the individual modeling of the global chain (PMSM, Inverter, and Rectifier). Then we presented and developed the two commands techniques to control the speed and the torque produced by this machine. The results of this study made it possible to evaluate the performance of these controls.
Rouabhi R, Abdessemed R, Abdelghafour H, Moustafad B.
Comparative Study Between Two Control Techniques Applied on the Permanent Magnet Synchronous Machine (PMSM). Advances in Modelling and Analysis C [Internet]. 2019;74 :51-58.
Publisher's VersionAbstractIn this article, we present a comparative study between two control techniques applied on the Permanent Magnet Synchronous Machine (PMSM), namely vector control and fuzzy logic. This comparison is based on three criteria: qualitative, quantitative and robust during the transient and permanent operation of the system. The latter comprises a machine is driven through the stator variables by two bidirectional converters. In the first part, we have presented the individual modeling of the global chain (PMSM, Inverter, and Rectifier). Then we presented and developed the two commands techniques to control the speed and the torque produced by this machine. The results of this study made it possible to evaluate the performance of these controls.
Rouabhi R, Abdessemed R, Abdelghafour H, Moustafad B.
Comparative Study Between Two Control Techniques Applied on the Permanent Magnet Synchronous Machine (PMSM). Advances in Modelling and Analysis C [Internet]. 2019;74 :51-58.
Publisher's VersionAbstractIn this article, we present a comparative study between two control techniques applied on the Permanent Magnet Synchronous Machine (PMSM), namely vector control and fuzzy logic. This comparison is based on three criteria: qualitative, quantitative and robust during the transient and permanent operation of the system. The latter comprises a machine is driven through the stator variables by two bidirectional converters. In the first part, we have presented the individual modeling of the global chain (PMSM, Inverter, and Rectifier). Then we presented and developed the two commands techniques to control the speed and the torque produced by this machine. The results of this study made it possible to evaluate the performance of these controls.
Rouabhi R, Abdessemed R, Abdelghafour H, Moustafad B.
Comparative Study Between Two Control Techniques Applied on the Permanent Magnet Synchronous Machine (PMSM). Advances in Modelling and Analysis C [Internet]. 2019;74 :51-58.
Publisher's VersionAbstractIn this article, we present a comparative study between two control techniques applied on the Permanent Magnet Synchronous Machine (PMSM), namely vector control and fuzzy logic. This comparison is based on three criteria: qualitative, quantitative and robust during the transient and permanent operation of the system. The latter comprises a machine is driven through the stator variables by two bidirectional converters. In the first part, we have presented the individual modeling of the global chain (PMSM, Inverter, and Rectifier). Then we presented and developed the two commands techniques to control the speed and the torque produced by this machine. The results of this study made it possible to evaluate the performance of these controls.
Bensaadi H, Harbouche Y, Abdessemed R.
DIRECT TORQUE CONTROL ( DTC-SVM ) OF PMSG BASED IN WIND ENERGY CONVERSION SYSTEM. U.P.B. Sci. Bull., Series C [Internet]. 2019;81 (2).
Publisher's VersionAbstractThis paper presents a comparative study between two strategies for the direct torque control (DTC) of the permanent magnet synchronous generator (PMSG) based on wind energy conversion system (WECS). The first method is a conventional direct torque control DTC and it is based on hysteresis controllers where the torque and the flux are regulated by these controllers. The second one is direct torque control by space vector modulation strategy (DTC-SVM) where the torque and flux are regulated by PI controllers. The simulation results are implemented by using MATLAB/SIMULINK. The main feature of the proposed (DTC-SVM) strategy is the reduction of torque and flux ripples. The proposed approach can be considered as an alternative solution to the control of PMSG.
Bensaadi H, Harbouche Y, Abdessemed R.
DIRECT TORQUE CONTROL ( DTC-SVM ) OF PMSG BASED IN WIND ENERGY CONVERSION SYSTEM. U.P.B. Sci. Bull., Series C [Internet]. 2019;81 (2).
Publisher's VersionAbstractThis paper presents a comparative study between two strategies for the direct torque control (DTC) of the permanent magnet synchronous generator (PMSG) based on wind energy conversion system (WECS). The first method is a conventional direct torque control DTC and it is based on hysteresis controllers where the torque and the flux are regulated by these controllers. The second one is direct torque control by space vector modulation strategy (DTC-SVM) where the torque and flux are regulated by PI controllers. The simulation results are implemented by using MATLAB/SIMULINK. The main feature of the proposed (DTC-SVM) strategy is the reduction of torque and flux ripples. The proposed approach can be considered as an alternative solution to the control of PMSG.
Bensaadi H, Harbouche Y, Abdessemed R.
Direct torque control (DTC-SVM) of PMSG based in wind energy conversion system. U.P.B. Sci. Bull., Series C. 2019;81 (2).
AbstractThis paper presents a comparative study between two strategies for the direct torque control (DTC) of the permanent magnet synchronous generator (PMSG) based on wind energy conversion system (WECS). The first method is a conventional direct torque control DTC and it is based on hysteresis controllers where the torque and the flux are regulated by these controllers. The second one is direct torque control by space vector modulation strategy (DTC-SVM) where the torque and flux are regulated by PI controllers. The simulation results are implemented by using MATLAB/SIMULINK. The main feature of the proposed (DTC-SVM) strategy is the reduction of torque and flux ripples. The proposed approach can be considered as an alternative solution to the control of PMSG.
Bensaadi H, Harbouche Y, Abdessemed R.
Direct torque control (DTC-SVM) of PMSG based in wind energy conversion system. U.P.B. Sci. Bull., Series C. 2019;81 (2).
AbstractThis paper presents a comparative study between two strategies for the direct torque control (DTC) of the permanent magnet synchronous generator (PMSG) based on wind energy conversion system (WECS). The first method is a conventional direct torque control DTC and it is based on hysteresis controllers where the torque and the flux are regulated by these controllers. The second one is direct torque control by space vector modulation strategy (DTC-SVM) where the torque and flux are regulated by PI controllers. The simulation results are implemented by using MATLAB/SIMULINK. The main feature of the proposed (DTC-SVM) strategy is the reduction of torque and flux ripples. The proposed approach can be considered as an alternative solution to the control of PMSG.
Bensaadi H, Harbouche Y, Abdessemed R.
DIRECT TORQUE CONTROL ( DTC-SVM ) OF PMSG BASED IN WIND ENERGY CONVERSION SYSTEM. U.P.B. Sci. Bull., Series C [Internet]. 2019;81 (2).
Publisher's VersionAbstractThis paper presents a comparative study between two strategies for the direct torque control (DTC) of the permanent magnet synchronous generator (PMSG) based on wind energy conversion system (WECS). The first method is a conventional direct torque control DTC and it is based on hysteresis controllers where the torque and the flux are regulated by these controllers. The second one is direct torque control by space vector modulation strategy (DTC-SVM) where the torque and flux are regulated by PI controllers. The simulation results are implemented by using MATLAB/SIMULINK. The main feature of the proposed (DTC-SVM) strategy is the reduction of torque and flux ripples. The proposed approach can be considered as an alternative solution to the control of PMSG.
Bensaadi H, Harbouche Y, Abdessemed R.
Direct torque control (DTC-SVM) of PMSG based in wind energy conversion system. U.P.B. Sci. Bull., Series C. 2019;81 (2).
AbstractThis paper presents a comparative study between two strategies for the direct torque control (DTC) of the permanent magnet synchronous generator (PMSG) based on wind energy conversion system (WECS). The first method is a conventional direct torque control DTC and it is based on hysteresis controllers where the torque and the flux are regulated by these controllers. The second one is direct torque control by space vector modulation strategy (DTC-SVM) where the torque and flux are regulated by PI controllers. The simulation results are implemented by using MATLAB/SIMULINK. The main feature of the proposed (DTC-SVM) strategy is the reduction of torque and flux ripples. The proposed approach can be considered as an alternative solution to the control of PMSG.
Yettou F, Gama A, Azoui B, Malek A, Panwar NL.
Experimental investigation and thermal modelling of box and parabolic type solar cookers for temperature mapping. Journal of Thermal Analysis and Calorimetry. An International Forum for Thermal Studies, J Therm Anal Calorim (2019). 2019;136 (3) :1347-1364.
AbstractThis investigation examines mathematical modelling and experimental validation of two types of solar cookers: a box type with tilted intercept area equipped with one external reflector, and a parabolic cooker with a new configuration. Experiments were carried out with the cookers filled with two kilograms of water from 08:00 to 15:00 solar time. During the experiments, temperature gain in the box-type solar cooker was recorded at about 69.8 °C and in the parabolic-type solar cooker at 73.6 °C at the stagnation point. Direct normal irradiation in three distinct study areas was observed and found that it varied from 7.6 to 10 kWh m⁻². Cooking pot placed in parabolic cooker was varied between 130 and 132 °C. Centre and south-east regions of study areas where global irradiation varied from 8 to 8.4 kWh m⁻² were found suitable for box-type solar cooker and cooking pot temperature were found in the range of 100 °C to 105 °C. Mathematical modelling was programmed in MATLAB. The theoretical results were consistent with experiential data for both types of solar cookers. The effectiveness of the two cooker types can be deduced from the maps. It is found the use of the cookers in Northern and Southern regions of the country was not identical. Their suitability for cooking depends on the amount of solar radiations received.
Yettou F, Gama A, Azoui B, Malek A, Panwar NL.
Experimental investigation and thermal modelling of box and parabolic type solar cookers for temperature mapping. Journal of Thermal Analysis and Calorimetry. An International Forum for Thermal Studies, J Therm Anal Calorim (2019). 2019;136 (3) :1347-1364.
AbstractThis investigation examines mathematical modelling and experimental validation of two types of solar cookers: a box type with tilted intercept area equipped with one external reflector, and a parabolic cooker with a new configuration. Experiments were carried out with the cookers filled with two kilograms of water from 08:00 to 15:00 solar time. During the experiments, temperature gain in the box-type solar cooker was recorded at about 69.8 °C and in the parabolic-type solar cooker at 73.6 °C at the stagnation point. Direct normal irradiation in three distinct study areas was observed and found that it varied from 7.6 to 10 kWh m⁻². Cooking pot placed in parabolic cooker was varied between 130 and 132 °C. Centre and south-east regions of study areas where global irradiation varied from 8 to 8.4 kWh m⁻² were found suitable for box-type solar cooker and cooking pot temperature were found in the range of 100 °C to 105 °C. Mathematical modelling was programmed in MATLAB. The theoretical results were consistent with experiential data for both types of solar cookers. The effectiveness of the two cooker types can be deduced from the maps. It is found the use of the cookers in Northern and Southern regions of the country was not identical. Their suitability for cooking depends on the amount of solar radiations received.
Yettou F, Gama A, Azoui B, Malek A, Panwar NL.
Experimental investigation and thermal modelling of box and parabolic type solar cookers for temperature mapping. Journal of Thermal Analysis and Calorimetry. An International Forum for Thermal Studies, J Therm Anal Calorim (2019). 2019;136 (3) :1347-1364.
AbstractThis investigation examines mathematical modelling and experimental validation of two types of solar cookers: a box type with tilted intercept area equipped with one external reflector, and a parabolic cooker with a new configuration. Experiments were carried out with the cookers filled with two kilograms of water from 08:00 to 15:00 solar time. During the experiments, temperature gain in the box-type solar cooker was recorded at about 69.8 °C and in the parabolic-type solar cooker at 73.6 °C at the stagnation point. Direct normal irradiation in three distinct study areas was observed and found that it varied from 7.6 to 10 kWh m⁻². Cooking pot placed in parabolic cooker was varied between 130 and 132 °C. Centre and south-east regions of study areas where global irradiation varied from 8 to 8.4 kWh m⁻² were found suitable for box-type solar cooker and cooking pot temperature were found in the range of 100 °C to 105 °C. Mathematical modelling was programmed in MATLAB. The theoretical results were consistent with experiential data for both types of solar cookers. The effectiveness of the two cooker types can be deduced from the maps. It is found the use of the cookers in Northern and Southern regions of the country was not identical. Their suitability for cooking depends on the amount of solar radiations received.
Yettou F, Gama A, Azoui B, Malek A, Panwar NL.
Experimental investigation and thermal modelling of box and parabolic type solar cookers for temperature mapping. Journal of Thermal Analysis and Calorimetry. An International Forum for Thermal Studies, J Therm Anal Calorim (2019). 2019;136 (3) :1347-1364.
AbstractThis investigation examines mathematical modelling and experimental validation of two types of solar cookers: a box type with tilted intercept area equipped with one external reflector, and a parabolic cooker with a new configuration. Experiments were carried out with the cookers filled with two kilograms of water from 08:00 to 15:00 solar time. During the experiments, temperature gain in the box-type solar cooker was recorded at about 69.8 °C and in the parabolic-type solar cooker at 73.6 °C at the stagnation point. Direct normal irradiation in three distinct study areas was observed and found that it varied from 7.6 to 10 kWh m⁻². Cooking pot placed in parabolic cooker was varied between 130 and 132 °C. Centre and south-east regions of study areas where global irradiation varied from 8 to 8.4 kWh m⁻² were found suitable for box-type solar cooker and cooking pot temperature were found in the range of 100 °C to 105 °C. Mathematical modelling was programmed in MATLAB. The theoretical results were consistent with experiential data for both types of solar cookers. The effectiveness of the two cooker types can be deduced from the maps. It is found the use of the cookers in Northern and Southern regions of the country was not identical. Their suitability for cooking depends on the amount of solar radiations received.