2019
Mansouri K, BRIOUA M, Djebaili H, Ghelani L, Chitour M.
Effect of Broken Fiber on Stress Transfer of Short Fiber Reinforced Thermoplastic Matrix Composite. Journal of Nano-and Electronic PhysicsJournal of Nano-and Electronic Physics. 2019;11.
Mansouri K, BRIOUA M, Djebaili H, Ghelani L, Chitour M.
Effect of Broken Fiber on Stress Transfer of Short Fiber Reinforced Thermoplastic Matrix Composite. Journal of Nano-and Electronic PhysicsJournal of Nano-and Electronic Physics. 2019;11.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M.
Effect of tumor suppressor miR-34a loaded on ZSM-5 nanozeolite in hepatocellular carcinoma: In vitro and in vivo approach. Current Gene TherapyCurrent Gene Therapy. 2019;19 :342-354.
Abdi A, Abbeche K, Athmania D, Bouassida M.
Effective width rule in the analysis of footing on reinforced sand slope. Studia Geotechnica et MechanicaStudia Geotechnica et Mechanica. 2019;41 :42-55.
Abdi A, Abbeche K, Athmania D, Bouassida M.
Effective width rule in the analysis of footing on reinforced sand slope. Studia Geotechnica et MechanicaStudia Geotechnica et Mechanica. 2019;41 :42-55.
Abdi A, Abbeche K, Athmania D, Bouassida M.
Effective width rule in the analysis of footing on reinforced sand slope. Studia Geotechnica et MechanicaStudia Geotechnica et Mechanica. 2019;41 :42-55.
Abdi A, Abbeche K, Athmania D, Bouassida M.
Effective width rule in the analysis of footing on reinforced sand slope. Studia Geotechnica et MechanicaStudia Geotechnica et Mechanica. 2019;41 :42-55.
Fayçal DJEFFAL, Hichem F, Benhaya A, Adel B.
Effects of annealing temperature and ITO intermediate thin-layer on electrical proprieties of Au/p-Si structure deposited by RF magnetron sputtering, ISSN 0749-6036. Superlattices and MicrostructuresSuperlattices and Microstructures. 2019;Volume 128 :pp 382-391.
AbstractIn this paper, a new Au/p-Si Schottky Barrier Diode (SBD) based on Indium Tin Oxide (ITO) intermediate thin-film is proposed and experimentally investigated by including the annealing temperature effect. We elaborated the Au/ITO/p-Si structure by means of RF magnetron sputtering technique and compared its electrical properties with the conventional Au/p-Si SBD. The role of the annealing process at 200 and 400 °C as well as the ITO interface thin-layer in improving the SBD basic electrical parameters is analyzed. The characterization has revealed that a higher Schottky barrier (ϕb) of 0.79V is achieved. Moreover, close to unit ideality factor of (n = 1.25) and reduced density of states (Nss = 1.5 × 1012cm-2) and series resistance of (Rs = 32Ω) are recorded. These achievements can be attributed to the enhanced interface quality provided by introducing the ITO thin-film. Moreover, the annealing process enables improved crystallinity and allows efficient rearrangement of atoms at the interfaces. The thermal stability behavior of the investigated designs is analyzed, where new Figure of Merit (FoMs) parameters are proposed. It is found that the annealed Au/ITO/p-Si structure offers the opportunity for suppressing the degradation related-heating effects. Therefore, the proposed Au/ITO/p-Si SBD pinpoint a new path toward achieving superior electrical characteristics and improved thermal stability, which makes it a potential alternative for high-performance microelectronic and optoelectronic applications.
Fayçal DJEFFAL, Hichem F, Benhaya A, Adel B.
Effects of annealing temperature and ITO intermediate thin-layer on electrical proprieties of Au/p-Si structure deposited by RF magnetron sputtering, ISSN 0749-6036. Superlattices and MicrostructuresSuperlattices and Microstructures. 2019;Volume 128 :pp 382-391.
AbstractIn this paper, a new Au/p-Si Schottky Barrier Diode (SBD) based on Indium Tin Oxide (ITO) intermediate thin-film is proposed and experimentally investigated by including the annealing temperature effect. We elaborated the Au/ITO/p-Si structure by means of RF magnetron sputtering technique and compared its electrical properties with the conventional Au/p-Si SBD. The role of the annealing process at 200 and 400 °C as well as the ITO interface thin-layer in improving the SBD basic electrical parameters is analyzed. The characterization has revealed that a higher Schottky barrier (ϕb) of 0.79V is achieved. Moreover, close to unit ideality factor of (n = 1.25) and reduced density of states (Nss = 1.5 × 1012cm-2) and series resistance of (Rs = 32Ω) are recorded. These achievements can be attributed to the enhanced interface quality provided by introducing the ITO thin-film. Moreover, the annealing process enables improved crystallinity and allows efficient rearrangement of atoms at the interfaces. The thermal stability behavior of the investigated designs is analyzed, where new Figure of Merit (FoMs) parameters are proposed. It is found that the annealed Au/ITO/p-Si structure offers the opportunity for suppressing the degradation related-heating effects. Therefore, the proposed Au/ITO/p-Si SBD pinpoint a new path toward achieving superior electrical characteristics and improved thermal stability, which makes it a potential alternative for high-performance microelectronic and optoelectronic applications.
Fayçal DJEFFAL, Hichem F, Benhaya A, Adel B.
Effects of annealing temperature and ITO intermediate thin-layer on electrical proprieties of Au/p-Si structure deposited by RF magnetron sputtering, ISSN 0749-6036. Superlattices and MicrostructuresSuperlattices and Microstructures. 2019;Volume 128 :pp 382-391.
AbstractIn this paper, a new Au/p-Si Schottky Barrier Diode (SBD) based on Indium Tin Oxide (ITO) intermediate thin-film is proposed and experimentally investigated by including the annealing temperature effect. We elaborated the Au/ITO/p-Si structure by means of RF magnetron sputtering technique and compared its electrical properties with the conventional Au/p-Si SBD. The role of the annealing process at 200 and 400 °C as well as the ITO interface thin-layer in improving the SBD basic electrical parameters is analyzed. The characterization has revealed that a higher Schottky barrier (ϕb) of 0.79V is achieved. Moreover, close to unit ideality factor of (n = 1.25) and reduced density of states (Nss = 1.5 × 1012cm-2) and series resistance of (Rs = 32Ω) are recorded. These achievements can be attributed to the enhanced interface quality provided by introducing the ITO thin-film. Moreover, the annealing process enables improved crystallinity and allows efficient rearrangement of atoms at the interfaces. The thermal stability behavior of the investigated designs is analyzed, where new Figure of Merit (FoMs) parameters are proposed. It is found that the annealed Au/ITO/p-Si structure offers the opportunity for suppressing the degradation related-heating effects. Therefore, the proposed Au/ITO/p-Si SBD pinpoint a new path toward achieving superior electrical characteristics and improved thermal stability, which makes it a potential alternative for high-performance microelectronic and optoelectronic applications.
Fayçal DJEFFAL, Hichem F, Benhaya A, Adel B.
Effects of annealing temperature and ITO intermediate thin-layer on electrical proprieties of Au/p-Si structure deposited by RF magnetron sputtering, ISSN 0749-6036. Superlattices and MicrostructuresSuperlattices and Microstructures. 2019;Volume 128 :pp 382-391.
AbstractIn this paper, a new Au/p-Si Schottky Barrier Diode (SBD) based on Indium Tin Oxide (ITO) intermediate thin-film is proposed and experimentally investigated by including the annealing temperature effect. We elaborated the Au/ITO/p-Si structure by means of RF magnetron sputtering technique and compared its electrical properties with the conventional Au/p-Si SBD. The role of the annealing process at 200 and 400 °C as well as the ITO interface thin-layer in improving the SBD basic electrical parameters is analyzed. The characterization has revealed that a higher Schottky barrier (ϕb) of 0.79V is achieved. Moreover, close to unit ideality factor of (n = 1.25) and reduced density of states (Nss = 1.5 × 1012cm-2) and series resistance of (Rs = 32Ω) are recorded. These achievements can be attributed to the enhanced interface quality provided by introducing the ITO thin-film. Moreover, the annealing process enables improved crystallinity and allows efficient rearrangement of atoms at the interfaces. The thermal stability behavior of the investigated designs is analyzed, where new Figure of Merit (FoMs) parameters are proposed. It is found that the annealed Au/ITO/p-Si structure offers the opportunity for suppressing the degradation related-heating effects. Therefore, the proposed Au/ITO/p-Si SBD pinpoint a new path toward achieving superior electrical characteristics and improved thermal stability, which makes it a potential alternative for high-performance microelectronic and optoelectronic applications.
Mebrouki A, Zineddine A, Vasseur P.
Effects of discrete controllers on the stabilization of natural convection induced by internal heat generation in a shallow cavity. Computational Thermal Sciences: An International JournalComputational Thermal Sciences: An International Journal. 2019;11.
Mebrouki A, Zineddine A, Vasseur P.
Effects of discrete controllers on the stabilization of natural convection induced by internal heat generation in a shallow cavity. Computational Thermal Sciences: An International JournalComputational Thermal Sciences: An International Journal. 2019;11.