Publications

2019
Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

Toufik BENDIB, Brahim L, Souhil KOUDA, Mohamed.Amir A, Abedelghani D, Chebaki E, Aouf AE, Fayçal M, Samir B. Numerical Study of Low Gain Avalanche Detector Performance. 2018 International Conference on Communications and Electrical Engineering (ICCEE). 2019.Abstract

In this paper, we present a new ultra fast detector called Low Gain Avalanche Detector (LGAD) with low internal gain. The LGAD is fabricated with conventional APD technology with a modified doping profile, in the multiplication region, which affects the device performance such as: breakdown, multiplication gain and noise factor. For this reason, a numerical method based on Newton-Raphson calculation is proposed to estimate the electrostatic potential and electric field models of low gain avalanche detectors (LGADs) in order to investigate their performances. These models have been validated by their agreement with TCAD numerical simulation results. The effect of Boron doping profile, with different doses in the multiplication region, on the LGAD electrical performance is studied for various device structures in order to extend the device capability to its limit. In addition, LGAD devices are simulated for different temperature considering the effect of the temperature on the multiplication gain.

AMADJI M, Ameddah H, Mazouz H. Numerical study of the biomimetic M6-C Prosthesis with viscoelastic core. UPB Sci Bull, Series DUPB Sci Bull, Series D. 2019;81 :121-134.
AMADJI M, Ameddah H, Mazouz H. Numerical study of the biomimetic M6-C Prosthesis with viscoelastic core. UPB Sci Bull, Series DUPB Sci Bull, Series D. 2019;81 :121-134.
AMADJI M, Ameddah H, Mazouz H. Numerical study of the biomimetic M6-C Prosthesis with viscoelastic core. UPB Sci Bull, Series DUPB Sci Bull, Series D. 2019;81 :121-134.
Hassinet L, Si-Ameur M. Numerical Study on Natural Convection in a Porous Cavity That is Partially Heated and Cooled by Sinusoidal Temperature at Vertical Walls. Journal of Porous MediaJournal of Porous Media. 2019;22.
Hassinet L, Si-Ameur M. Numerical Study on Natural Convection in a Porous Cavity That is Partially Heated and Cooled by Sinusoidal Temperature at Vertical Walls. Journal of Porous MediaJournal of Porous Media. 2019;22.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.
Merradi M, Kassah-Laouar A, Ayachi A, Heleili N, Menasria T, Hocquet D, Cholley P, Sauget M. Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. The Journal of Infection in Developing CountriesThe Journal of Infection in Developing Countries. 2019;13 :284-290.

Pages