Publications

2022
H. Belalite, M.R. Menani, Athamena A. Calculation of water needs of the main crops and water resources available in a semi-arid climate, case of Zana-Gada{\"ıne plain, Northeastern Algeria. Algerian Journal of Environmental Science and Technology ALJEST [Internet]. 2022;8 (2). Publisher's VersionAbstract
The relative scarcity of water resources in Algeria and their unequal distribution induce a rational use of available resources. The Zana-Gada{\"ıne plain appears as an exemplary case study, where the difficulties posed by the problem of crop water needs versus the availability of water resources appear. This article, based on field surveys and in-situ measurements, aims to identify the pressure of irrigation on water resources and the optimization of their use in an agricultural area, where irrigated agriculture represents 85% of the water consumption of the Zana-Gada{\"ıne plain. The piezometric study in correlation with hydrogeological data reveals that groundwater resources are limited, aggravated by wastage resulting in a consequent drawdown of 24 meters over 11 years. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops.
H. Belalite, M.R. Menani, Athamena A. Calculation of water needs of the main crops and water resources available in a semi-arid climate, case of Zana-Gada{\"ıne plain, Northeastern Algeria. Algerian Journal of Environmental Science and Technology ALJEST [Internet]. 2022;8 (2). Publisher's VersionAbstract
The relative scarcity of water resources in Algeria and their unequal distribution induce a rational use of available resources. The Zana-Gada{\"ıne plain appears as an exemplary case study, where the difficulties posed by the problem of crop water needs versus the availability of water resources appear. This article, based on field surveys and in-situ measurements, aims to identify the pressure of irrigation on water resources and the optimization of their use in an agricultural area, where irrigated agriculture represents 85% of the water consumption of the Zana-Gada{\"ıne plain. The piezometric study in correlation with hydrogeological data reveals that groundwater resources are limited, aggravated by wastage resulting in a consequent drawdown of 24 meters over 11 years. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops.
H. Belalite, M.R. Menani, Athamena A. Calculation of water needs of the main crops and water resources available in a semi-arid climate, case of Zana-Gada{\"ıne plain, Northeastern Algeria. Algerian Journal of Environmental Science and Technology ALJEST [Internet]. 2022;8 (2). Publisher's VersionAbstract
The relative scarcity of water resources in Algeria and their unequal distribution induce a rational use of available resources. The Zana-Gada{\"ıne plain appears as an exemplary case study, where the difficulties posed by the problem of crop water needs versus the availability of water resources appear. This article, based on field surveys and in-situ measurements, aims to identify the pressure of irrigation on water resources and the optimization of their use in an agricultural area, where irrigated agriculture represents 85% of the water consumption of the Zana-Gada{\"ıne plain. The piezometric study in correlation with hydrogeological data reveals that groundwater resources are limited, aggravated by wastage resulting in a consequent drawdown of 24 meters over 11 years. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops. The analysis of interannual climate variability has enabled us to draw rainfall maps characteristic of the evolution of rainfall over the past decades where we observe a net deficit in precipitation. We calculated the evapotranspiration and the requirements in irrigation water for each crop in order to compare them with the available hydric resources and the establishment of irrigation schedules for the principal irrigated crops.
Noui L. Security limitations of Shamir’s secret sharing. Journal of Discrete Mathematical Sciences and Cryptography [Internet]. 2022 :1-13. Publisher's VersionAbstract
The security is so important for both storing and transmitting the digital data, the choice of parameters is critical for a security system, that is, a weak parameter will make the scheme very vulnerable to attacks, for example the use of supersingular curves or anomalous curves leads to weaknesses in elliptic curve cryptosystems, for RSA cryptosystem there are some attacks for low public exponent or small private exponent. In certain circumstances the secret sharing scheme is required to decentralize the risk. In the context of the security of secret sharing schemes, it is known that for the scheme of Shamir, an unqualified set of shares cannot leak any information about the secret. This paper aims to show that the well-known Shamir’s secret sharing is not always perfect and that the uniform randomization before sharing is insufficient to obtain a secure scheme. The second purpose of this paper is to give an explicit construction of weak polynomials for which the Shamir’s (k, n) threshold scheme is insecure in the sense that there exist a fewer than k shares which can reconstruct the secret. Particular attention is given to the scheme whose threshold is less than or equal to 6. It also showed that for certain threshold k, the secret can be calculated by a pair of shares with the probability of 1/2. Finally, in order to address the mentioned vulnerabilities, several classes of polynomials should be avoided.
Benreguia B, Moumen H. Some Consistency Rules for Graph Matching. SN Computer Science [Internet]. 2022;3 (2) :1-16. Publisher's VersionAbstract
Graph matching is a comparison process of two objects represented as graphs through finding a correspondence between vertices and edges. This process allows defining a similarity degree (or dissimilarity) between the graphs. Generally, graph matching is used for extracting, finding and retrieving any information or sub-information that can be represented by graphs. In this paper, a new consistency rule is proposed to tackle with various problems of graph matching. After, using the proposed rule as a necessary and sufficient condition for the graph isomorphism, we generalize it for subgraph isomorphism, homomorphism and for an example of inexact graph matching. To determine whether there is a matching or not, a backtracking algorithm called CRGI2 is presented who checks the consistency rule by exploring the overall search space. The tree-search is consolidated with a tree pruning technique that eliminates the unfruitful branches as early as possible. Experimental results show that our algorithm is efficient and applicable for a real case application in the information retrieval field. On the efficiency side, due to the ability of the proposed rule to eliminate as early as possible the incorrect solutions, our algorithm outperforms the existing algorithms in the literature. For the application side, the algorithm has been successfully tested for querying a real dataset that contains a large set of e-mail messages.
Benreguia B, Moumen H. Some Consistency Rules for Graph Matching. SN Computer Science [Internet]. 2022;3 (2) :1-16. Publisher's VersionAbstract
Graph matching is a comparison process of two objects represented as graphs through finding a correspondence between vertices and edges. This process allows defining a similarity degree (or dissimilarity) between the graphs. Generally, graph matching is used for extracting, finding and retrieving any information or sub-information that can be represented by graphs. In this paper, a new consistency rule is proposed to tackle with various problems of graph matching. After, using the proposed rule as a necessary and sufficient condition for the graph isomorphism, we generalize it for subgraph isomorphism, homomorphism and for an example of inexact graph matching. To determine whether there is a matching or not, a backtracking algorithm called CRGI2 is presented who checks the consistency rule by exploring the overall search space. The tree-search is consolidated with a tree pruning technique that eliminates the unfruitful branches as early as possible. Experimental results show that our algorithm is efficient and applicable for a real case application in the information retrieval field. On the efficiency side, due to the ability of the proposed rule to eliminate as early as possible the incorrect solutions, our algorithm outperforms the existing algorithms in the literature. For the application side, the algorithm has been successfully tested for querying a real dataset that contains a large set of e-mail messages.
Hayi MY, Chouiref Z, Moumen H. Towards Intelligent Road Traffic Management Over a Weighted Large Graphs Hybrid Meta-Heuristic-Based Approach. Journal of Cases on Information Technology (JCIT) [Internet]. 2022;24 (3) :1-18. Publisher's VersionAbstract
This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.
Hayi MY, Chouiref Z, Moumen H. Towards Intelligent Road Traffic Management Over a Weighted Large Graphs Hybrid Meta-Heuristic-Based Approach. Journal of Cases on Information Technology (JCIT) [Internet]. 2022;24 (3) :1-18. Publisher's VersionAbstract
This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.
Hayi MY, Chouiref Z, Moumen H. Towards Intelligent Road Traffic Management Over a Weighted Large Graphs Hybrid Meta-Heuristic-Based Approach. Journal of Cases on Information Technology (JCIT) [Internet]. 2022;24 (3) :1-18. Publisher's VersionAbstract
This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.
Soltani O, BENABDELKADER SOUAD. Euclidean distance versus Manhattan distance for skin detection using the SFA database. International Journal of Biometrics [Internet]. 2022;14 (1) :46-60. Publisher's VersionAbstract
Skin detection is very challenging because of the differences in illumination, cameras characteristics, the range of skin colours due to different ethnicities and many other variations. New effective and accurate methodologies are developed for skin colour detection to easily identify human’s skin colour threw databases which are specifically designed to assist research in the area of face recognition. One of these is the recently built SFA database that showed high accuracy for segmentation of face images. The approach described in this paper exploits skin and non-skin samples provided by SFA for skin segmentation on the basis of the well-known Euclidean and Manhattan distance metrics. Most importantly, the scheme proposed tries to segment facial colour images inside or outside SFA by means of skin samples belonging to SFA. Simulation results in both SFA and UTD colour face databases indicate that detection rates higher than 95% can be achieved with either measure.
Soltani O, BENABDELKADER SOUAD. Euclidean distance versus Manhattan distance for skin detection using the SFA database. International Journal of Biometrics [Internet]. 2022;14 (1) :46-60. Publisher's VersionAbstract
Skin detection is very challenging because of the differences in illumination, cameras characteristics, the range of skin colours due to different ethnicities and many other variations. New effective and accurate methodologies are developed for skin colour detection to easily identify human’s skin colour threw databases which are specifically designed to assist research in the area of face recognition. One of these is the recently built SFA database that showed high accuracy for segmentation of face images. The approach described in this paper exploits skin and non-skin samples provided by SFA for skin segmentation on the basis of the well-known Euclidean and Manhattan distance metrics. Most importantly, the scheme proposed tries to segment facial colour images inside or outside SFA by means of skin samples belonging to SFA. Simulation results in both SFA and UTD colour face databases indicate that detection rates higher than 95% can be achieved with either measure.
Ramadan FZ, cal Djeffal F\c, Drissi LB, Saidi S, Ferhati H. Highly efficient ACdTS kesterite solar cell based on a new photovoltaic material. Journal of Physics and Chemistry of Solids [Internet]. 2022;161. Publisher's VersionAbstract
The quasiparticle band structures and optical properties of ACdTS kesterite are investigated here on the basis of first-principles calculations, including the many-body effects theory, by using the GW plus Bethe-Salpeter equation. There were significant GW-quasiparticle corrections, over 0.9 eV, to the GGA-Kohn-Sham band gap. Our calculations also show that ACdTS kesterite had a small binding energy, exhibited optical absorption in the visible region, high minority carrier mobility, and large diffusion in length, rendering this material a promising candidate for solar cells. Based on these findings, we designed and implemented an ACdTS absorber in a thin-film solar cell (TFSC) structure. The new kesterite solar cell has a high efficiency of 11.6% with a low deficit in the output voltage. Moreover, a strategic combination between the particle swarm optimization approach and the ACdTS TFSC decorated with periodic nanowires is proposed to obtain significantly improved photovoltaic characteristics. The optimized design identifies a new pathway for a high conversion efficiency of 14%, far surpassing that provided by the conventional TFSC kesterite.
Ramadan FZ, cal Djeffal F\c, Drissi LB, Saidi S, Ferhati H. Highly efficient ACdTS kesterite solar cell based on a new photovoltaic material. Journal of Physics and Chemistry of Solids [Internet]. 2022;161. Publisher's VersionAbstract
The quasiparticle band structures and optical properties of ACdTS kesterite are investigated here on the basis of first-principles calculations, including the many-body effects theory, by using the GW plus Bethe-Salpeter equation. There were significant GW-quasiparticle corrections, over 0.9 eV, to the GGA-Kohn-Sham band gap. Our calculations also show that ACdTS kesterite had a small binding energy, exhibited optical absorption in the visible region, high minority carrier mobility, and large diffusion in length, rendering this material a promising candidate for solar cells. Based on these findings, we designed and implemented an ACdTS absorber in a thin-film solar cell (TFSC) structure. The new kesterite solar cell has a high efficiency of 11.6% with a low deficit in the output voltage. Moreover, a strategic combination between the particle swarm optimization approach and the ACdTS TFSC decorated with periodic nanowires is proposed to obtain significantly improved photovoltaic characteristics. The optimized design identifies a new pathway for a high conversion efficiency of 14%, far surpassing that provided by the conventional TFSC kesterite.
Ramadan FZ, cal Djeffal F\c, Drissi LB, Saidi S, Ferhati H. Highly efficient ACdTS kesterite solar cell based on a new photovoltaic material. Journal of Physics and Chemistry of Solids [Internet]. 2022;161. Publisher's VersionAbstract
The quasiparticle band structures and optical properties of ACdTS kesterite are investigated here on the basis of first-principles calculations, including the many-body effects theory, by using the GW plus Bethe-Salpeter equation. There were significant GW-quasiparticle corrections, over 0.9 eV, to the GGA-Kohn-Sham band gap. Our calculations also show that ACdTS kesterite had a small binding energy, exhibited optical absorption in the visible region, high minority carrier mobility, and large diffusion in length, rendering this material a promising candidate for solar cells. Based on these findings, we designed and implemented an ACdTS absorber in a thin-film solar cell (TFSC) structure. The new kesterite solar cell has a high efficiency of 11.6% with a low deficit in the output voltage. Moreover, a strategic combination between the particle swarm optimization approach and the ACdTS TFSC decorated with periodic nanowires is proposed to obtain significantly improved photovoltaic characteristics. The optimized design identifies a new pathway for a high conversion efficiency of 14%, far surpassing that provided by the conventional TFSC kesterite.
Ramadan FZ, cal Djeffal F\c, Drissi LB, Saidi S, Ferhati H. Highly efficient ACdTS kesterite solar cell based on a new photovoltaic material. Journal of Physics and Chemistry of Solids [Internet]. 2022;161. Publisher's VersionAbstract
The quasiparticle band structures and optical properties of ACdTS kesterite are investigated here on the basis of first-principles calculations, including the many-body effects theory, by using the GW plus Bethe-Salpeter equation. There were significant GW-quasiparticle corrections, over 0.9 eV, to the GGA-Kohn-Sham band gap. Our calculations also show that ACdTS kesterite had a small binding energy, exhibited optical absorption in the visible region, high minority carrier mobility, and large diffusion in length, rendering this material a promising candidate for solar cells. Based on these findings, we designed and implemented an ACdTS absorber in a thin-film solar cell (TFSC) structure. The new kesterite solar cell has a high efficiency of 11.6% with a low deficit in the output voltage. Moreover, a strategic combination between the particle swarm optimization approach and the ACdTS TFSC decorated with periodic nanowires is proposed to obtain significantly improved photovoltaic characteristics. The optimized design identifies a new pathway for a high conversion efficiency of 14%, far surpassing that provided by the conventional TFSC kesterite.
Ramadan FZ, cal Djeffal F\c, Drissi LB, Saidi S, Ferhati H. Highly efficient ACdTS kesterite solar cell based on a new photovoltaic material. Journal of Physics and Chemistry of Solids [Internet]. 2022;161. Publisher's VersionAbstract
The quasiparticle band structures and optical properties of ACdTS kesterite are investigated here on the basis of first-principles calculations, including the many-body effects theory, by using the GW plus Bethe-Salpeter equation. There were significant GW-quasiparticle corrections, over 0.9 eV, to the GGA-Kohn-Sham band gap. Our calculations also show that ACdTS kesterite had a small binding energy, exhibited optical absorption in the visible region, high minority carrier mobility, and large diffusion in length, rendering this material a promising candidate for solar cells. Based on these findings, we designed and implemented an ACdTS absorber in a thin-film solar cell (TFSC) structure. The new kesterite solar cell has a high efficiency of 11.6% with a low deficit in the output voltage. Moreover, a strategic combination between the particle swarm optimization approach and the ACdTS TFSC decorated with periodic nanowires is proposed to obtain significantly improved photovoltaic characteristics. The optimized design identifies a new pathway for a high conversion efficiency of 14%, far surpassing that provided by the conventional TFSC kesterite.
Ferhati H, cal Djeffal F\c, Bendjerad A, Foughali L, Benhaya A, Saidi A. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds [Internet]. 2022. Publisher's VersionAbstract
In this paper, a new high-performance tunable band-selective (UV-Visible) photodetector (PD) based on RF sputtered a-SiC active layer is demonstrated. SiC thin-films were deposited on glass substrate by RF magnetron sputtering method at different sputter power values ranging from 60 W to 120 W. The samples morphological, structural, optical and photodetection properties were investigated by carrying out XRD, SEM, EDS, UV-Vis spectroscopy and photoresponse measurements. It was revealed that the sputtering power could modulate the optical behavior of a-SiC alloy, tuning favorable visible absorbance at high sputter power. This phenomenon is correlated with the influence of the RF power on the SiC film structural properties and compositions. Interestingly, measurements showed that a-SiC PD elaborated at 60 W of RF power can detect UV radiation with a high responsivity of 138 mA/W, low noise effects, superior detectivity of 7.8 × 1012 Jones, while maintaining the visible blindness property. On the other hand, the prepared device at high sputtering power exhibits extended photoresponse characteristics, yielding 426 mA/W and 77 mA/W of responsivity values over UV and visible ranges, respectively. Therefore, the present investigation can provide a new strategy for the design and fabrication of photodetector devices based on SiC platform with broadband and solar-blind adjustable sensing purposes according to the desired application.
Ferhati H, cal Djeffal F\c, Bendjerad A, Foughali L, Benhaya A, Saidi A. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds [Internet]. 2022. Publisher's VersionAbstract
In this paper, a new high-performance tunable band-selective (UV-Visible) photodetector (PD) based on RF sputtered a-SiC active layer is demonstrated. SiC thin-films were deposited on glass substrate by RF magnetron sputtering method at different sputter power values ranging from 60 W to 120 W. The samples morphological, structural, optical and photodetection properties were investigated by carrying out XRD, SEM, EDS, UV-Vis spectroscopy and photoresponse measurements. It was revealed that the sputtering power could modulate the optical behavior of a-SiC alloy, tuning favorable visible absorbance at high sputter power. This phenomenon is correlated with the influence of the RF power on the SiC film structural properties and compositions. Interestingly, measurements showed that a-SiC PD elaborated at 60 W of RF power can detect UV radiation with a high responsivity of 138 mA/W, low noise effects, superior detectivity of 7.8 × 1012 Jones, while maintaining the visible blindness property. On the other hand, the prepared device at high sputtering power exhibits extended photoresponse characteristics, yielding 426 mA/W and 77 mA/W of responsivity values over UV and visible ranges, respectively. Therefore, the present investigation can provide a new strategy for the design and fabrication of photodetector devices based on SiC platform with broadband and solar-blind adjustable sensing purposes according to the desired application.
Ferhati H, cal Djeffal F\c, Bendjerad A, Foughali L, Benhaya A, Saidi A. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds [Internet]. 2022. Publisher's VersionAbstract
In this paper, a new high-performance tunable band-selective (UV-Visible) photodetector (PD) based on RF sputtered a-SiC active layer is demonstrated. SiC thin-films were deposited on glass substrate by RF magnetron sputtering method at different sputter power values ranging from 60 W to 120 W. The samples morphological, structural, optical and photodetection properties were investigated by carrying out XRD, SEM, EDS, UV-Vis spectroscopy and photoresponse measurements. It was revealed that the sputtering power could modulate the optical behavior of a-SiC alloy, tuning favorable visible absorbance at high sputter power. This phenomenon is correlated with the influence of the RF power on the SiC film structural properties and compositions. Interestingly, measurements showed that a-SiC PD elaborated at 60 W of RF power can detect UV radiation with a high responsivity of 138 mA/W, low noise effects, superior detectivity of 7.8 × 1012 Jones, while maintaining the visible blindness property. On the other hand, the prepared device at high sputtering power exhibits extended photoresponse characteristics, yielding 426 mA/W and 77 mA/W of responsivity values over UV and visible ranges, respectively. Therefore, the present investigation can provide a new strategy for the design and fabrication of photodetector devices based on SiC platform with broadband and solar-blind adjustable sensing purposes according to the desired application.
Ferhati H, cal Djeffal F\c, Bendjerad A, Foughali L, Benhaya A, Saidi A. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds [Internet]. 2022. Publisher's VersionAbstract
In this paper, a new high-performance tunable band-selective (UV-Visible) photodetector (PD) based on RF sputtered a-SiC active layer is demonstrated. SiC thin-films were deposited on glass substrate by RF magnetron sputtering method at different sputter power values ranging from 60 W to 120 W. The samples morphological, structural, optical and photodetection properties were investigated by carrying out XRD, SEM, EDS, UV-Vis spectroscopy and photoresponse measurements. It was revealed that the sputtering power could modulate the optical behavior of a-SiC alloy, tuning favorable visible absorbance at high sputter power. This phenomenon is correlated with the influence of the RF power on the SiC film structural properties and compositions. Interestingly, measurements showed that a-SiC PD elaborated at 60 W of RF power can detect UV radiation with a high responsivity of 138 mA/W, low noise effects, superior detectivity of 7.8 × 1012 Jones, while maintaining the visible blindness property. On the other hand, the prepared device at high sputtering power exhibits extended photoresponse characteristics, yielding 426 mA/W and 77 mA/W of responsivity values over UV and visible ranges, respectively. Therefore, the present investigation can provide a new strategy for the design and fabrication of photodetector devices based on SiC platform with broadband and solar-blind adjustable sensing purposes according to the desired application.

Pages