2022
Ferhati H, cal Djeffal F\c, Bendjerad A, Foughali L, Benhaya A, Saidi A.
Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds [Internet]. 2022.
Publisher's VersionAbstractIn this paper, a new high-performance tunable band-selective (UV-Visible) photodetector (PD) based on RF sputtered a-SiC active layer is demonstrated. SiC thin-films were deposited on glass substrate by RF magnetron sputtering method at different sputter power values ranging from 60 W to 120 W. The samples morphological, structural, optical and photodetection properties were investigated by carrying out XRD, SEM, EDS, UV-Vis spectroscopy and photoresponse measurements. It was revealed that the sputtering power could modulate the optical behavior of a-SiC alloy, tuning favorable visible absorbance at high sputter power. This phenomenon is correlated with the influence of the RF power on the SiC film structural properties and compositions. Interestingly, measurements showed that a-SiC PD elaborated at 60 W of RF power can detect UV radiation with a high responsivity of 138 mA/W, low noise effects, superior detectivity of 7.8 × 1012 Jones, while maintaining the visible blindness property. On the other hand, the prepared device at high sputtering power exhibits extended photoresponse characteristics, yielding 426 mA/W and 77 mA/W of responsivity values over UV and visible ranges, respectively. Therefore, the present investigation can provide a new strategy for the design and fabrication of photodetector devices based on SiC platform with broadband and solar-blind adjustable sensing purposes according to the desired application.
Ferhati H, cal Djeffal F\c, Bendjerad A, Foughali L, Benhaya A, Saidi A.
Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power. Journal of Alloys and Compounds [Internet]. 2022.
Publisher's VersionAbstractIn this paper, a new high-performance tunable band-selective (UV-Visible) photodetector (PD) based on RF sputtered a-SiC active layer is demonstrated. SiC thin-films were deposited on glass substrate by RF magnetron sputtering method at different sputter power values ranging from 60 W to 120 W. The samples morphological, structural, optical and photodetection properties were investigated by carrying out XRD, SEM, EDS, UV-Vis spectroscopy and photoresponse measurements. It was revealed that the sputtering power could modulate the optical behavior of a-SiC alloy, tuning favorable visible absorbance at high sputter power. This phenomenon is correlated with the influence of the RF power on the SiC film structural properties and compositions. Interestingly, measurements showed that a-SiC PD elaborated at 60 W of RF power can detect UV radiation with a high responsivity of 138 mA/W, low noise effects, superior detectivity of 7.8 × 1012 Jones, while maintaining the visible blindness property. On the other hand, the prepared device at high sputtering power exhibits extended photoresponse characteristics, yielding 426 mA/W and 77 mA/W of responsivity values over UV and visible ranges, respectively. Therefore, the present investigation can provide a new strategy for the design and fabrication of photodetector devices based on SiC platform with broadband and solar-blind adjustable sensing purposes according to the desired application.
Dridi C, Touafek N, Mahamdi R.
Inverted PTB7:PC70BM bulk heterojunction solar cell device simulations for various inorganic hole transport materials. Optik [Internet]. 2022;252.
Publisher's VersionAbstractIn this work, an inverted PTB7:PC70BM bulk heterojunction solar cells with the configuration of ITO/ZnO/ PTB7:PC70BM / HTMs/Ag for various inorganic materials as a hole transport layer (ZnO, MoO3, NiO, PEDOT: PSS, V2O5 and Cu2O) are simulated by using the GPVDM software which is a free general-purpose tool for the simulation of opto-electronic devices. The influence of the thickness of both PTB7:PC70BM and HTMs layers on the performance of the solar cell are investigated. The obtained results indicated that on regardless on the type of the inorganic material constituted the Hole Transport Material (HTM), the solar cell parameters can be improved by reducing the HTM thickness while the active layer optimum thickness is around 90 nm. The performance of the device with all inorganic materials used as HTM reaches the same levels as the PEDOT/PSS for the lower thickness (10 nm). As the thickness is increased, the electrical parameters are significantly enhanced by inserting cuprous oxide (Cu2O) compared to the conventional PEDOT: PSS.
Dridi C, Touafek N, Mahamdi R.
Inverted PTB7:PC70BM bulk heterojunction solar cell device simulations for various inorganic hole transport materials. Optik [Internet]. 2022;252.
Publisher's VersionAbstractIn this work, an inverted PTB7:PC70BM bulk heterojunction solar cells with the configuration of ITO/ZnO/ PTB7:PC70BM / HTMs/Ag for various inorganic materials as a hole transport layer (ZnO, MoO3, NiO, PEDOT: PSS, V2O5 and Cu2O) are simulated by using the GPVDM software which is a free general-purpose tool for the simulation of opto-electronic devices. The influence of the thickness of both PTB7:PC70BM and HTMs layers on the performance of the solar cell are investigated. The obtained results indicated that on regardless on the type of the inorganic material constituted the Hole Transport Material (HTM), the solar cell parameters can be improved by reducing the HTM thickness while the active layer optimum thickness is around 90 nm. The performance of the device with all inorganic materials used as HTM reaches the same levels as the PEDOT/PSS for the lower thickness (10 nm). As the thickness is increased, the electrical parameters are significantly enhanced by inserting cuprous oxide (Cu2O) compared to the conventional PEDOT: PSS.
Dridi C, Touafek N, Mahamdi R.
Inverted PTB7:PC70BM bulk heterojunction solar cell device simulations for various inorganic hole transport materials. Optik [Internet]. 2022;252.
Publisher's VersionAbstractIn this work, an inverted PTB7:PC70BM bulk heterojunction solar cells with the configuration of ITO/ZnO/ PTB7:PC70BM / HTMs/Ag for various inorganic materials as a hole transport layer (ZnO, MoO3, NiO, PEDOT: PSS, V2O5 and Cu2O) are simulated by using the GPVDM software which is a free general-purpose tool for the simulation of opto-electronic devices. The influence of the thickness of both PTB7:PC70BM and HTMs layers on the performance of the solar cell are investigated. The obtained results indicated that on regardless on the type of the inorganic material constituted the Hole Transport Material (HTM), the solar cell parameters can be improved by reducing the HTM thickness while the active layer optimum thickness is around 90 nm. The performance of the device with all inorganic materials used as HTM reaches the same levels as the PEDOT/PSS for the lower thickness (10 nm). As the thickness is increased, the electrical parameters are significantly enhanced by inserting cuprous oxide (Cu2O) compared to the conventional PEDOT: PSS.
Ferhati H, cal Djeffal F\c, Drissi LB.
Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors. Journal of Science: Advanced Materials and Devices [Internet]. 2022;7 (1).
Publisher's VersionAbstractA new multispectral InGaZnO (IGZO) thin-film phototransistor (TF PT) based on a graded band-gap (GBG) SiGe capping layer with metallic nanoparticles (MNPs) is proposed. An accurate drain-current model is developed to investigate the device performances, where the optical characteristics under different light excitations (530 nm, 820 nm, and 1550 nm) are analyzed using the 3-D Finite-difference time-domain method (FDTD). It is found that the proposed device shows high photoresponse characteristics. Besides, it is revealed that the GBG configuration, MNPs spatial distribution and size can induce a complex behavior, which influences the device photoresponse over multiple spectral bands. Importantly, an iterative decision-maker framework based on the Multi-Objective Genetic Algorithm (MOGA) metaheuristic approach is implemented to design efficient multispectral IGZO TF PT. It is demonstrated that the proposed MOGA-based scheme paves the way for the designer to identify the appropriate GBG profile and MNPs spatial distribution for highly-responsive devices at selective Visible and IR wavelengths and to realize high-performance multispectral sensors. The proposed approach based on combining the proposed IGZO TF PT structure with MOGA metaheuristic computation opens up a new strategy for the design and experimental fabrication of high-performance multispectral optoelectronic devices.
Ferhati H, cal Djeffal F\c, Drissi LB.
Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors. Journal of Science: Advanced Materials and Devices [Internet]. 2022;7 (1).
Publisher's VersionAbstractA new multispectral InGaZnO (IGZO) thin-film phototransistor (TF PT) based on a graded band-gap (GBG) SiGe capping layer with metallic nanoparticles (MNPs) is proposed. An accurate drain-current model is developed to investigate the device performances, where the optical characteristics under different light excitations (530 nm, 820 nm, and 1550 nm) are analyzed using the 3-D Finite-difference time-domain method (FDTD). It is found that the proposed device shows high photoresponse characteristics. Besides, it is revealed that the GBG configuration, MNPs spatial distribution and size can induce a complex behavior, which influences the device photoresponse over multiple spectral bands. Importantly, an iterative decision-maker framework based on the Multi-Objective Genetic Algorithm (MOGA) metaheuristic approach is implemented to design efficient multispectral IGZO TF PT. It is demonstrated that the proposed MOGA-based scheme paves the way for the designer to identify the appropriate GBG profile and MNPs spatial distribution for highly-responsive devices at selective Visible and IR wavelengths and to realize high-performance multispectral sensors. The proposed approach based on combining the proposed IGZO TF PT structure with MOGA metaheuristic computation opens up a new strategy for the design and experimental fabrication of high-performance multispectral optoelectronic devices.
Ferhati H, cal Djeffal F\c, Drissi LB.
Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors. Journal of Science: Advanced Materials and Devices [Internet]. 2022;7 (1).
Publisher's VersionAbstractA new multispectral InGaZnO (IGZO) thin-film phototransistor (TF PT) based on a graded band-gap (GBG) SiGe capping layer with metallic nanoparticles (MNPs) is proposed. An accurate drain-current model is developed to investigate the device performances, where the optical characteristics under different light excitations (530 nm, 820 nm, and 1550 nm) are analyzed using the 3-D Finite-difference time-domain method (FDTD). It is found that the proposed device shows high photoresponse characteristics. Besides, it is revealed that the GBG configuration, MNPs spatial distribution and size can induce a complex behavior, which influences the device photoresponse over multiple spectral bands. Importantly, an iterative decision-maker framework based on the Multi-Objective Genetic Algorithm (MOGA) metaheuristic approach is implemented to design efficient multispectral IGZO TF PT. It is demonstrated that the proposed MOGA-based scheme paves the way for the designer to identify the appropriate GBG profile and MNPs spatial distribution for highly-responsive devices at selective Visible and IR wavelengths and to realize high-performance multispectral sensors. The proposed approach based on combining the proposed IGZO TF PT structure with MOGA metaheuristic computation opens up a new strategy for the design and experimental fabrication of high-performance multispectral optoelectronic devices.
Mechnane A, Hafdaoui H, Benatia D.
Study of Leaky Acoustic Micro-Waves in Piezoelectric Material (Lithium Niobate Cut Y-X) Using Probabilistic Neural Network (PNN) Classification. INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY [Internet]. 2022;17 (2).
Publisher's VersionAbstractIn this paper, the leaky acoustic microwaves (LAW) in a piezoelectric substrate (Lithium Niobate LiNbO3 Cut Y-X) were studied. The main method for this research was classification using a probabilistic neural network (PNN).The originality of this method is in the accurate values it provides. In our case, this technique was helpful in identifying undetectable waves, which are difficult to identify by classical methods. Moreover, all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity were classified in order to build a model from which we could easily note the Leaky waves. Accurate values of the coefficient attenuation and acoustic velocity for Leaky waves were obtained. Hence, in this study, the focus was on the interesting modeling and realization of acoustic microwave devices (radiating structures) based on the propagation of acoustic microwaves
Mechnane A, Hafdaoui H, Benatia D.
Study of Leaky Acoustic Micro-Waves in Piezoelectric Material (Lithium Niobate Cut Y-X) Using Probabilistic Neural Network (PNN) Classification. INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY [Internet]. 2022;17 (2).
Publisher's VersionAbstractIn this paper, the leaky acoustic microwaves (LAW) in a piezoelectric substrate (Lithium Niobate LiNbO3 Cut Y-X) were studied. The main method for this research was classification using a probabilistic neural network (PNN).The originality of this method is in the accurate values it provides. In our case, this technique was helpful in identifying undetectable waves, which are difficult to identify by classical methods. Moreover, all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity were classified in order to build a model from which we could easily note the Leaky waves. Accurate values of the coefficient attenuation and acoustic velocity for Leaky waves were obtained. Hence, in this study, the focus was on the interesting modeling and realization of acoustic microwave devices (radiating structures) based on the propagation of acoustic microwaves
Mechnane A, Hafdaoui H, Benatia D.
Study of Leaky Acoustic Micro-Waves in Piezoelectric Material (Lithium Niobate Cut Y-X) Using Probabilistic Neural Network (PNN) Classification. INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY [Internet]. 2022;17 (2).
Publisher's VersionAbstractIn this paper, the leaky acoustic microwaves (LAW) in a piezoelectric substrate (Lithium Niobate LiNbO3 Cut Y-X) were studied. The main method for this research was classification using a probabilistic neural network (PNN).The originality of this method is in the accurate values it provides. In our case, this technique was helpful in identifying undetectable waves, which are difficult to identify by classical methods. Moreover, all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity were classified in order to build a model from which we could easily note the Leaky waves. Accurate values of the coefficient attenuation and acoustic velocity for Leaky waves were obtained. Hence, in this study, the focus was on the interesting modeling and realization of acoustic microwave devices (radiating structures) based on the propagation of acoustic microwaves
OUNISSI AMOUR, Kaddouri A, Aggoune MS, Abdessemed R.
SECOND ORDER SLIDING MODE CONTROLLERS OF MICROPOSITIONING STAGE PIEZOELECTRIC ACTUATOR WITH COLMAN-HODGDON MODEL PARAMETERS. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg [Internet]. 2022;1 (67) :41–46.
Publisher's VersionAbstract
This paper presents the second-order sliding mode controller (SOSMC) of a micro-positioning stage piezoelectric model actuator (PEA), where the C-H model parameters are adopted to describe the hysteresis behavior and identified through particle swarm optimization. In this technique, two control algorithms are developed. The first one is the so-called twisting algorithm (TA). The control appears explicitly in the second surface derivative, and in a discontinuous control action that ensures a sliding regime mode. The second one, the super twisting algorithms (STA) has been developed and analyzed for systems. The use of both algorithms gives a significant reduction in chattering as compared to the standard sliding mode control. It is shown that the STA case offers better performances than TA. Simulation results are presented to demonstrate the advantage of SOSMC over SMC.
OUNISSI AMOUR, Kaddouri A, Aggoune MS, Abdessemed R.
SECOND ORDER SLIDING MODE CONTROLLERS OF MICROPOSITIONING STAGE PIEZOELECTRIC ACTUATOR WITH COLMAN-HODGDON MODEL PARAMETERS. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg [Internet]. 2022;1 (67) :41–46.
Publisher's VersionAbstract
This paper presents the second-order sliding mode controller (SOSMC) of a micro-positioning stage piezoelectric model actuator (PEA), where the C-H model parameters are adopted to describe the hysteresis behavior and identified through particle swarm optimization. In this technique, two control algorithms are developed. The first one is the so-called twisting algorithm (TA). The control appears explicitly in the second surface derivative, and in a discontinuous control action that ensures a sliding regime mode. The second one, the super twisting algorithms (STA) has been developed and analyzed for systems. The use of both algorithms gives a significant reduction in chattering as compared to the standard sliding mode control. It is shown that the STA case offers better performances than TA. Simulation results are presented to demonstrate the advantage of SOSMC over SMC.
OUNISSI AMOUR, Kaddouri A, Aggoune MS, Abdessemed R.
SECOND ORDER SLIDING MODE CONTROLLERS OF MICROPOSITIONING STAGE PIEZOELECTRIC ACTUATOR WITH COLMAN-HODGDON MODEL PARAMETERS. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg [Internet]. 2022;1 (67) :41–46.
Publisher's VersionAbstract
This paper presents the second-order sliding mode controller (SOSMC) of a micro-positioning stage piezoelectric model actuator (PEA), where the C-H model parameters are adopted to describe the hysteresis behavior and identified through particle swarm optimization. In this technique, two control algorithms are developed. The first one is the so-called twisting algorithm (TA). The control appears explicitly in the second surface derivative, and in a discontinuous control action that ensures a sliding regime mode. The second one, the super twisting algorithms (STA) has been developed and analyzed for systems. The use of both algorithms gives a significant reduction in chattering as compared to the standard sliding mode control. It is shown that the STA case offers better performances than TA. Simulation results are presented to demonstrate the advantage of SOSMC over SMC.
OUNISSI AMOUR, Kaddouri A, Aggoune MS, Abdessemed R.
SECOND ORDER SLIDING MODE CONTROLLERS OF MICROPOSITIONING STAGE PIEZOELECTRIC ACTUATOR WITH COLMAN-HODGDON MODEL PARAMETERS. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg [Internet]. 2022;1 (67) :41–46.
Publisher's VersionAbstract
This paper presents the second-order sliding mode controller (SOSMC) of a micro-positioning stage piezoelectric model actuator (PEA), where the C-H model parameters are adopted to describe the hysteresis behavior and identified through particle swarm optimization. In this technique, two control algorithms are developed. The first one is the so-called twisting algorithm (TA). The control appears explicitly in the second surface derivative, and in a discontinuous control action that ensures a sliding regime mode. The second one, the super twisting algorithms (STA) has been developed and analyzed for systems. The use of both algorithms gives a significant reduction in chattering as compared to the standard sliding mode control. It is shown that the STA case offers better performances than TA. Simulation results are presented to demonstrate the advantage of SOSMC over SMC.
Benabbas A, Zaidi E, Abdessemed R.
Sliding Mode Control of a Wind Power System Based on a Self-Excited Asynchronous Generator. Journal Européen des Systèmes Automatisés [Internet]. 2022;55 (1) :131-137.
Publisher's VersionAbstract
In this work, the modeling and the sliding mode control of a self-excited asynchronous generator integrated in a wind energy conversion system is studied. The dc-link voltage and frequency output by the wind turbine depend on the wind intensity applied to the turbine and load. The goal of the study is to increase energy quality and to achieve a stabilization of dc-link voltage and frequency values based on sliding mode control. This method offers stability and robustness against external disturbances. However, this method is based in the power converter to improve the excellent dynamic of wind energy conversion system to meet the connection to the main grid. The simulation results show the efficiency and reliability of the proposed control method.
Benabbas A, Zaidi E, Abdessemed R.
Sliding Mode Control of a Wind Power System Based on a Self-Excited Asynchronous Generator. Journal Européen des Systèmes Automatisés [Internet]. 2022;55 (1) :131-137.
Publisher's VersionAbstract
In this work, the modeling and the sliding mode control of a self-excited asynchronous generator integrated in a wind energy conversion system is studied. The dc-link voltage and frequency output by the wind turbine depend on the wind intensity applied to the turbine and load. The goal of the study is to increase energy quality and to achieve a stabilization of dc-link voltage and frequency values based on sliding mode control. This method offers stability and robustness against external disturbances. However, this method is based in the power converter to improve the excellent dynamic of wind energy conversion system to meet the connection to the main grid. The simulation results show the efficiency and reliability of the proposed control method.
Benabbas A, Zaidi E, Abdessemed R.
Sliding Mode Control of a Wind Power System Based on a Self-Excited Asynchronous Generator. Journal Européen des Systèmes Automatisés [Internet]. 2022;55 (1) :131-137.
Publisher's VersionAbstract
In this work, the modeling and the sliding mode control of a self-excited asynchronous generator integrated in a wind energy conversion system is studied. The dc-link voltage and frequency output by the wind turbine depend on the wind intensity applied to the turbine and load. The goal of the study is to increase energy quality and to achieve a stabilization of dc-link voltage and frequency values based on sliding mode control. This method offers stability and robustness against external disturbances. However, this method is based in the power converter to improve the excellent dynamic of wind energy conversion system to meet the connection to the main grid. The simulation results show the efficiency and reliability of the proposed control method.
Boulagouas W, Mébarek D, Chaib R.
Contribution to risk assessment: a dynamic approach using Bayesian theory. 1st International Symposium on Industrial Engineering, Maintenance and Safety, March 05-06th. 2022.
Boulagouas W, Mébarek D, Chaib R.
Contribution to risk assessment: a dynamic approach using Bayesian theory. 1st International Symposium on Industrial Engineering, Maintenance and Safety, March 05-06th. 2022.