Publications

2022
Hafhouf I, Bahloul O, Abbeche K. Effects of drying-wetting cycles on the salinity and the mechanical behavior of sebkha soils. A case study from Ain M'Lila, Algeria. CATENA [Internet]. 2022;212 :106099. Publisher's VersionAbstract

Sebkha soils are defined as problem soils located in arid, semi-arid, and coastal areas. Generally, they are fine soil, composed of silt, sand, and clay, which are cemented by different salts (e.g., halite, gypsum, and calcite). In nature, sebkha saline soils are exposed to different drying and wetting (D-W) cycles. However, these cycles have a significant effect on the mechanical behavior of these soils. This study aims to characterize the chemical, mineralogical, and geotechnical properties of sebkha soil using an experimental approach. We focus on the effects of D-W cycles on the unconfined compressive strength (UCS) and salinity of sebkha soils from Ain M'Lila, Algeria. In addition, these D-W cycles were applied to the samples dried in the open air to achieve the targeted water content (water content values of 7%, 11.4%, and 13%). The results obtained show that the UCS increases with decrease in water content and decreases with an increase in the number of D-W cycles. In addition, these cycles affect the salinity of the sebkha soil. Indeed, a significant decrease in soil salinity was recorded with an increase in the number of D-W cycles. Finally, a relationship was found between the salinity of the soil and UCS. The latter decreases with a decrease in soil salinity; this relationship becomes very significant for low water content values of 7% or less.

Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of metallo-β-lactamases and OXA-48 carbapenemase producing gram-negative bacteria in hospital wastewater in Algeria: a potential dissemination pathway into the environment. Microbial Drug Resistance [Internet]. 2022;28 (1) :23-30. Publisher's VersionAbstract

Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.

Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of metallo-β-lactamases and OXA-48 carbapenemase producing gram-negative bacteria in hospital wastewater in Algeria: a potential dissemination pathway into the environment. Microbial Drug Resistance [Internet]. 2022;28 (1) :23-30. Publisher's VersionAbstract

Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.

Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of metallo-β-lactamases and OXA-48 carbapenemase producing gram-negative bacteria in hospital wastewater in Algeria: a potential dissemination pathway into the environment. Microbial Drug Resistance [Internet]. 2022;28 (1) :23-30. Publisher's VersionAbstract

Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.

Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of metallo-β-lactamases and OXA-48 carbapenemase producing gram-negative bacteria in hospital wastewater in Algeria: a potential dissemination pathway into the environment. Microbial Drug Resistance [Internet]. 2022;28 (1) :23-30. Publisher's VersionAbstract

Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.

Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of metallo-β-lactamases and OXA-48 carbapenemase producing gram-negative bacteria in hospital wastewater in Algeria: a potential dissemination pathway into the environment. Microbial Drug Resistance [Internet]. 2022;28 (1) :23-30. Publisher's VersionAbstract

Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.

Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of metallo-β-lactamases and OXA-48 carbapenemase producing gram-negative bacteria in hospital wastewater in Algeria: a potential dissemination pathway into the environment. Microbial Drug Resistance [Internet]. 2022;28 (1) :23-30. Publisher's VersionAbstract

Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Fezzani A, Hadj-Mahammed I, Kouzou A, Zaghba L, Drid S, Khennane M, Kennel R, Abdelrahem M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability [Internet]. 2022;14 (3) :1771. Publisher's VersionAbstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Salhi H. Evaluation of the Spatial Distribution of the Annual Extreme Precipitation Using Kriging and Co-Kriging Methods in Algeria Country. In: Climate Issues in Asia and Africa-Examining Climate, Its Flux, the Consequences, and Society's Responses. IntechOpen ; 2022. Publisher's VersionAbstract

Abstract

In this chapter, we have conducted a statistical study of the annual extreme precipitation (AMP) for 856 grid cells and during the period of 1979–2012 in Algeria. In the first step, we compared graphically the forecasts of the three parameters of the generalized extreme value (GEV) distribution (location, scale and shape) which are estimated by the Spherical model. We used the Cross validation method to compare the two methods kriging and Co-kriging, based on the based on some statistical indicators such as Mean Errors (ME), Root Mean Square Errors (RMSE) and Squared Deviation Ratio (MSDR). The Kriging forecast error map shows low errors expected near the stations, while co-Kriging gives the lowest errors on average at the national level, which means that the method of co-Kriging is the best. From the results of the return periods, we calculate that after 50 years the estimated of the annual extreme precipitation will exceed the maximum AMP is observed in the 33-year.

Heddar Y, Djebabra M, Saadi S. An exploratory study on the prevalence of workplace violence: the case of Algerian hospitals. Employee Relations: The International Journal [Internet]. 2022. Publisher's VersionAbstract

Purpose

Workplace violence is a universal phenomenon that is constantly increasing. In this regard, this study aims to investigate the prevalence of violence committed against Algerian health professionals.

Design/methodology/approach

A cross-sectional survey, based on an anonymous, self-administered questionnaire, was conducted in healthcare settings of eastern Algeria (where 144 respondents participated in this study). Besides, socio-demographic characteristics and data related to violence, including its prevalence, different forms, perpetrators, reporting and the way it is handled, were analyzed using descriptive and inferential statistics.

Findings

Half of the respondents were victims of violence. More specifically, 90.1% of them were verbally abused. Compared to physical violence, verbal violence was significantly perpetrated against women and young health professionals (p < 0.05). However, nurses and those with less than or equal to five years of work experience were the most vulnerable to both types of violence (p < 0.05). Moreover, the main perpetrators were the patients' relatives (70%) followed by the patients themselves (51.4%). In terms of risk treatment, aggressors were verbally warned (60%). For violence reporting, 31% of the respondents observe such a fact as not being important. Finally, 65.7% of the participants reported that their employers had provided them with security measures (guards).

Originality/value

This is the first study conducted in Algeria that examines the prevalence of violence and its relationship with socio-demographic characteristics. Authorities must react effectively to solve this problem by implementing preventive and anticipatory strategies.

Heddar Y, Djebabra M, Saadi S. An exploratory study on the prevalence of workplace violence: the case of Algerian hospitals. Employee Relations: The International Journal [Internet]. 2022. Publisher's VersionAbstract

Purpose

Workplace violence is a universal phenomenon that is constantly increasing. In this regard, this study aims to investigate the prevalence of violence committed against Algerian health professionals.

Design/methodology/approach

A cross-sectional survey, based on an anonymous, self-administered questionnaire, was conducted in healthcare settings of eastern Algeria (where 144 respondents participated in this study). Besides, socio-demographic characteristics and data related to violence, including its prevalence, different forms, perpetrators, reporting and the way it is handled, were analyzed using descriptive and inferential statistics.

Findings

Half of the respondents were victims of violence. More specifically, 90.1% of them were verbally abused. Compared to physical violence, verbal violence was significantly perpetrated against women and young health professionals (p < 0.05). However, nurses and those with less than or equal to five years of work experience were the most vulnerable to both types of violence (p < 0.05). Moreover, the main perpetrators were the patients' relatives (70%) followed by the patients themselves (51.4%). In terms of risk treatment, aggressors were verbally warned (60%). For violence reporting, 31% of the respondents observe such a fact as not being important. Finally, 65.7% of the participants reported that their employers had provided them with security measures (guards).

Originality/value

This is the first study conducted in Algeria that examines the prevalence of violence and its relationship with socio-demographic characteristics. Authorities must react effectively to solve this problem by implementing preventive and anticipatory strategies.

Heddar Y, Djebabra M, Saadi S. An exploratory study on the prevalence of workplace violence: the case of Algerian hospitals. Employee Relations: The International Journal [Internet]. 2022. Publisher's VersionAbstract

Purpose

Workplace violence is a universal phenomenon that is constantly increasing. In this regard, this study aims to investigate the prevalence of violence committed against Algerian health professionals.

Design/methodology/approach

A cross-sectional survey, based on an anonymous, self-administered questionnaire, was conducted in healthcare settings of eastern Algeria (where 144 respondents participated in this study). Besides, socio-demographic characteristics and data related to violence, including its prevalence, different forms, perpetrators, reporting and the way it is handled, were analyzed using descriptive and inferential statistics.

Findings

Half of the respondents were victims of violence. More specifically, 90.1% of them were verbally abused. Compared to physical violence, verbal violence was significantly perpetrated against women and young health professionals (p < 0.05). However, nurses and those with less than or equal to five years of work experience were the most vulnerable to both types of violence (p < 0.05). Moreover, the main perpetrators were the patients' relatives (70%) followed by the patients themselves (51.4%). In terms of risk treatment, aggressors were verbally warned (60%). For violence reporting, 31% of the respondents observe such a fact as not being important. Finally, 65.7% of the participants reported that their employers had provided them with security measures (guards).

Originality/value

This is the first study conducted in Algeria that examines the prevalence of violence and its relationship with socio-demographic characteristics. Authorities must react effectively to solve this problem by implementing preventive and anticipatory strategies.

Bensmaine O, Nait-Said R, Zidani F. Failure Diagnostic of Emergency Shutdown Valve (ESDV) Based on Fault-Symptom Tree and Fuzzy Inference System: A Case Study. Journal of Failure Analysis and Prevention [Internet]. 2022;22 :785–800. Publisher's VersionAbstract

The Emergency Shutdown System (ESD) is a type of Safety Instrumented Systems (SIS) used to shut down the system in the event of anomalous conditions, it consists of sensors, logic solvers, and final elements. Reliability databases such as OREDA (Offshore and Onshore Reliability Data) and expert judgment indicate that Emergency Shutdown Valve (ESDV) failures are the most common cause of the unavailability of ESDs. Therefore, proper diagnostic is essential to prevent the failure risks of these valves. ESDV problems are of a different nature and difficult to treat with mathematical models because of their non-linear behavior, the imprecision of information, and the appearance of many failure modes that arise from many failure causes. Therefore, failure diagnostic mechanism based on heuristic knowledge of ESDV parameters must be established. In this paper, the problem of diagnosing ESDV failures is addressed based on the fault-symptom tree model and the Multiple Input-Multiple Output (MIMO) fuzzy inference system. The latter is built on a set of linguistic rules “if-then” provided by the fault-symptom tree model. the proposed approach was applied and verified on an ESDV subsystem in the petrochemical industry.

Pages