2017
Fawzi S, Fayçal DJEFFAL, Hichem F.
Efficiency increase of hybrid organic/inorganic solar cells with optimized interface grating morphology for improved light trapping, ISSN 0030-4026. OptikOptik. 2017;Volume 130 :pp 1092-1098.
AbstractIn this paper, a new design methodology by optimizing the silicon/organic interface morphology is proposed to achieve superior optical behavior for pentacene-based organic/inorganic solar cells. Our purpose dwells on reducing the refracting light in the silicon and improves the absorbance behavior in the solar cell. In this context, a numerical model based on accurate solutions of Maxwell’s equations is developed in order to study the impact of both interface texturization morphologies (triangular and grooves) on the optical absorbance and electrical performance. It is found that the proposed design morphology has profound implication on modulating the electric field, which increases the light trapping capability. It is also confirmed that the overall electrical performance is significantly improved as compared to the conventional organic/inorganic solar cells, where the proposed design exhibits superior integral absorption behavior and large interface area. Moreover, a new hybrid approach by combining of the numerical and metaheuristic models is developed to boost the device performance by optimizing the interface morphology. The obtained results make the proposed design methodology valuable for providing high-efficiency organic/inorganic solar cells.
Fawzi S, Fayçal DJEFFAL, Hichem F.
Efficiency increase of hybrid organic/inorganic solar cells with optimized interface grating morphology for improved light trapping, ISSN 0030-4026. OptikOptik. 2017;Volume 130 :pp 1092-1098.
AbstractIn this paper, a new design methodology by optimizing the silicon/organic interface morphology is proposed to achieve superior optical behavior for pentacene-based organic/inorganic solar cells. Our purpose dwells on reducing the refracting light in the silicon and improves the absorbance behavior in the solar cell. In this context, a numerical model based on accurate solutions of Maxwell’s equations is developed in order to study the impact of both interface texturization morphologies (triangular and grooves) on the optical absorbance and electrical performance. It is found that the proposed design morphology has profound implication on modulating the electric field, which increases the light trapping capability. It is also confirmed that the overall electrical performance is significantly improved as compared to the conventional organic/inorganic solar cells, where the proposed design exhibits superior integral absorption behavior and large interface area. Moreover, a new hybrid approach by combining of the numerical and metaheuristic models is developed to boost the device performance by optimizing the interface morphology. The obtained results make the proposed design methodology valuable for providing high-efficiency organic/inorganic solar cells.
Fawzi S, Fayçal DJEFFAL, Hichem F.
Efficiency increase of hybrid organic/inorganic solar cells with optimized interface grating morphology for improved light trapping, ISSN 0030-4026. OptikOptik. 2017;Volume 130 :pp 1092-1098.
AbstractIn this paper, a new design methodology by optimizing the silicon/organic interface morphology is proposed to achieve superior optical behavior for pentacene-based organic/inorganic solar cells. Our purpose dwells on reducing the refracting light in the silicon and improves the absorbance behavior in the solar cell. In this context, a numerical model based on accurate solutions of Maxwell’s equations is developed in order to study the impact of both interface texturization morphologies (triangular and grooves) on the optical absorbance and electrical performance. It is found that the proposed design morphology has profound implication on modulating the electric field, which increases the light trapping capability. It is also confirmed that the overall electrical performance is significantly improved as compared to the conventional organic/inorganic solar cells, where the proposed design exhibits superior integral absorption behavior and large interface area. Moreover, a new hybrid approach by combining of the numerical and metaheuristic models is developed to boost the device performance by optimizing the interface morphology. The obtained results make the proposed design methodology valuable for providing high-efficiency organic/inorganic solar cells.
Sami B, Randa B, Siham B, Tarek F.
Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates. Advanced Electromagnetics, e-ISSN 2119-0275. 2017;Volume 6 :pp 40-45.
AbstractIn this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials. Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.
Sami B, Randa B, Siham B, Tarek F.
Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates. Advanced Electromagnetics, e-ISSN 2119-0275. 2017;Volume 6 :pp 40-45.
AbstractIn this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials. Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.
Sami B, Randa B, Siham B, Tarek F.
Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates. Advanced Electromagnetics, e-ISSN 2119-0275. 2017;Volume 6 :pp 40-45.
AbstractIn this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials. Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.
Sami B, Randa B, Siham B, Tarek F.
Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates. Advanced Electromagnetics, e-ISSN 2119-0275. 2017;Volume 6 :pp 40-45.
AbstractIn this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials. Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.
Fayçal M, Zohir D.
An efficient small size electromagnetic energy harvesting sensor for low-DC-power applications, ISSN / e-ISSN 1751-8725 / 1751-8733. IET Microwaves, Antennas & PropagationIET Microwaves, Antennas & Propagation. 2017;Volume 11 :pp 483 - 489.
AbstractAn efficient small size electromagnetic energy harvesting sensor for low-DC-power applications is proposed. The sensor consists of two main parts: a dual polarisation square patch antenna used to collect the RF energy at a central frequency of 2.45 GHz, and two voltage doublers rectifier circuit for the RF-to-DC conversion. The overall size of the design is 50 × 50 × 6.2 mm 3 . Firstly, the antenna is designed using high-frequency structure simulator software; followed by the design of the rectifier circuit in advanced design system. After simulations, a sensor prototype is fabricated using F4B as the antenna substrate. Measurements show that the sensor achieves a comparatively high maximum measured efficiency of 41% for a power level of -10 dBm. The sensor has a simple structure, it is compact sized, light weight, and presents a high RF-to-DC conversion efficiency for low-RF-power levels which can be used to charge different low-DC-power devices.
Meddour F, Dibi Z.
An efficient small size electromagnetic energy harvesting sensor for low-DC-power applications. IET Microwaves, Antennas & PropagationIET Microwaves, Antennas & Propagation. 2017;11 :483-489.
Fayçal M, Zohir D.
An efficient small size electromagnetic energy harvesting sensor for low-DC-power applications, ISSN / e-ISSN 1751-8725 / 1751-8733. IET Microwaves, Antennas & PropagationIET Microwaves, Antennas & Propagation. 2017;Volume 11 :pp 483 - 489.
AbstractAn efficient small size electromagnetic energy harvesting sensor for low-DC-power applications is proposed. The sensor consists of two main parts: a dual polarisation square patch antenna used to collect the RF energy at a central frequency of 2.45 GHz, and two voltage doublers rectifier circuit for the RF-to-DC conversion. The overall size of the design is 50 × 50 × 6.2 mm 3 . Firstly, the antenna is designed using high-frequency structure simulator software; followed by the design of the rectifier circuit in advanced design system. After simulations, a sensor prototype is fabricated using F4B as the antenna substrate. Measurements show that the sensor achieves a comparatively high maximum measured efficiency of 41% for a power level of -10 dBm. The sensor has a simple structure, it is compact sized, light weight, and presents a high RF-to-DC conversion efficiency for low-RF-power levels which can be used to charge different low-DC-power devices.
Meddour F, Dibi Z.
An efficient small size electromagnetic energy harvesting sensor for low-DC-power applications. IET Microwaves, Antennas & PropagationIET Microwaves, Antennas & Propagation. 2017;11 :483-489.
Sami B, Siham B, Tarek F.
An efficient study of circular microstrip antenna on suspended and composite substrates, e-ISSN 1572-8137. Journal of Computational ElectronicsJournal of Computational Electronics. 2017;Volume 16 :pp 922-2017.
AbstractIn this paper, an efficient full-wave analysis of a circular microstrip patch printed on suspended and composite substrates is performed using a dyadic Green’s function formulation. Galerkin’s technique is used in the resolution of the integral equation of the electric field. The TM set of modes issued, from the magnetic wall cavity model, are used to expand the unknown currents on the circular patch. The radiation patterns are expressed regarding the transforms of the currents. The convergence of the method is proven by calculating the resonant frequencies, half-power bandwidths, and quality factors for several configurations. The computed results are found to be in excellent agreement with those observed in the literature. The numerical results obtained show that the bandwidth increases with the increase in the thickness of the suspended or composite substrates, especially for low permittivity of the second layer. Also, it is demonstrated that the resonant frequencies of the circular microstrip patch on suspended and composite substrates can be adjusted to obtain the maximum operating frequency of the antenna. Finally, the effect of the presence of the second layer under the circular patch on the radiation patterns is also investigated.
BEDRA S, BENKOUDA S, FORTAKI T.
An efficient study of circular microstrip antenna on suspended and composite substrates. Journal of Computational ElectronicsJournal of Computational Electronics. 2017;16 :922-929.
Sami B, Siham B, Tarek F.
An efficient study of circular microstrip antenna on suspended and composite substrates, e-ISSN 1572-8137. Journal of Computational ElectronicsJournal of Computational Electronics. 2017;Volume 16 :pp 922-2017.
AbstractIn this paper, an efficient full-wave analysis of a circular microstrip patch printed on suspended and composite substrates is performed using a dyadic Green’s function formulation. Galerkin’s technique is used in the resolution of the integral equation of the electric field. The TM set of modes issued, from the magnetic wall cavity model, are used to expand the unknown currents on the circular patch. The radiation patterns are expressed regarding the transforms of the currents. The convergence of the method is proven by calculating the resonant frequencies, half-power bandwidths, and quality factors for several configurations. The computed results are found to be in excellent agreement with those observed in the literature. The numerical results obtained show that the bandwidth increases with the increase in the thickness of the suspended or composite substrates, especially for low permittivity of the second layer. Also, it is demonstrated that the resonant frequencies of the circular microstrip patch on suspended and composite substrates can be adjusted to obtain the maximum operating frequency of the antenna. Finally, the effect of the presence of the second layer under the circular patch on the radiation patterns is also investigated.
BEDRA S, BENKOUDA S, FORTAKI T.
An efficient study of circular microstrip antenna on suspended and composite substrates. Journal of Computational ElectronicsJournal of Computational Electronics. 2017;16 :922-929.
Sami B, Siham B, Tarek F.
An efficient study of circular microstrip antenna on suspended and composite substrates, e-ISSN 1572-8137. Journal of Computational ElectronicsJournal of Computational Electronics. 2017;Volume 16 :pp 922-2017.
AbstractIn this paper, an efficient full-wave analysis of a circular microstrip patch printed on suspended and composite substrates is performed using a dyadic Green’s function formulation. Galerkin’s technique is used in the resolution of the integral equation of the electric field. The TM set of modes issued, from the magnetic wall cavity model, are used to expand the unknown currents on the circular patch. The radiation patterns are expressed regarding the transforms of the currents. The convergence of the method is proven by calculating the resonant frequencies, half-power bandwidths, and quality factors for several configurations. The computed results are found to be in excellent agreement with those observed in the literature. The numerical results obtained show that the bandwidth increases with the increase in the thickness of the suspended or composite substrates, especially for low permittivity of the second layer. Also, it is demonstrated that the resonant frequencies of the circular microstrip patch on suspended and composite substrates can be adjusted to obtain the maximum operating frequency of the antenna. Finally, the effect of the presence of the second layer under the circular patch on the radiation patterns is also investigated.