Benabid A, Benmbarek, Naima, Mansouri T, Merdas A.
Influence of Highway Traffic on Contamination of Roadside Soil with Heavy Metals. Civil Engineering Journal [Internet]. 2021;7 (8) :1459-1471.
Publisher's VersionAbstract
This study is one of the first works which examined the assessment of heavy metal contamination of pavement-side soils in Algeria. It deals with the section of National Highway 3 (RN3), which crosses the wilaya of Batna. In the environment of sampling sites there is no industry or dangerous activity on the environment, the heavy metals addressed in this study are (Pb, Cu, Cr, Fe, Ni, Zn), their origin being road traffic. The objectives of this study were to: (1) Determine the concentrations of heavy metals in road dust; (2) Identify the sources of different heavy metals in soils and road dust; (3) Exploring the extent of heavy metal pollution in neighbouring soils. To this end, 33 samples were collected, including 03 road dust and 30 soil samples over different distances from 1m to 80m. The samples were analyzed by FRX. Results indicated that concentrations in road dust were higher than in soil. The distribution of heavy metal concentrations in dust is Fe>Pb>Zn>Cu>Cr>Ni, and the distribution in the ground is Fe>Pb>Cu>Zn>Cr>Ni in the direction of Biskra and in the opposite direction and decreases away from the road, while the distribution in the central solid ground is Fe> Cu>Cr>Pb>Zn>Ni. Climatic conditions such as wind, rainfall, temperature, humidity and the nature of the terrain were also significantly related to their enrichment in these roadside soils. The enrichment factor (EF) and the geo-accumulation index (Igeo) were calculated, as well as all elements with a (EF) that ranges from moderate to high to extremely contaminated, reflecting the high anthropogenic load of these metals in the study area and the results of the Igéo accumulation indices confirm the results obtained for the enrichment factor (EF).
Benabid A, Benmbarek, Naima, Mansouri T, Merdas A.
Influence of Highway Traffic on Contamination of Roadside Soil with Heavy Metals. Civil Engineering Journal [Internet]. 2021;7 (8) :1459-1471.
Publisher's VersionAbstract
This study is one of the first works which examined the assessment of heavy metal contamination of pavement-side soils in Algeria. It deals with the section of National Highway 3 (RN3), which crosses the wilaya of Batna. In the environment of sampling sites there is no industry or dangerous activity on the environment, the heavy metals addressed in this study are (Pb, Cu, Cr, Fe, Ni, Zn), their origin being road traffic. The objectives of this study were to: (1) Determine the concentrations of heavy metals in road dust; (2) Identify the sources of different heavy metals in soils and road dust; (3) Exploring the extent of heavy metal pollution in neighbouring soils. To this end, 33 samples were collected, including 03 road dust and 30 soil samples over different distances from 1m to 80m. The samples were analyzed by FRX. Results indicated that concentrations in road dust were higher than in soil. The distribution of heavy metal concentrations in dust is Fe>Pb>Zn>Cu>Cr>Ni, and the distribution in the ground is Fe>Pb>Cu>Zn>Cr>Ni in the direction of Biskra and in the opposite direction and decreases away from the road, while the distribution in the central solid ground is Fe> Cu>Cr>Pb>Zn>Ni. Climatic conditions such as wind, rainfall, temperature, humidity and the nature of the terrain were also significantly related to their enrichment in these roadside soils. The enrichment factor (EF) and the geo-accumulation index (Igeo) were calculated, as well as all elements with a (EF) that ranges from moderate to high to extremely contaminated, reflecting the high anthropogenic load of these metals in the study area and the results of the Igéo accumulation indices confirm the results obtained for the enrichment factor (EF).
Saidani A, Fourar A, Massouh F.
Influence of temperature on transient flow with cavitation in copper pipe-rig. Modeling Earth Systems and Environment [Internet]. 2021;8 :2449–2459.
Publisher's VersionAbstract
This article is particularly interested in the numerical modeling of water hammer in a hydraulic circuit, taking into account the prevailing water temperature. The study concerns the propagation velocity of the wave and the amplitude of unsteady phenomena encountered in the circuit, as well as the severity and collapse of cavitations that are also considered as major risks. To conjecture the consequences of these phenomena, we were led to simulate a single-phase and two-phase transient flows in a hydraulic copper pipe system in a temperature range of 4–95 °C. To do this, we have developed a solver for the dynamic and continuity equations’ resolution. The method of characteristics is chosen for its capacities to solve these equations. Its application shows that it is robust and adapted to the problem studied. Two cavitations’ models and column separation have been incorporated; in this case, the Discrete Vapor Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM). Moreover, in addition to the classic models of quasi-stable friction, of which the models of unsteady friction have been included, like the one based on the instantaneous acceleration proposed by Brunone and the one proposed by Vardy & Brown based on the convolution integral. Although single-phase and two-phase water hammers do not behave in the same way, the results obtained with these models show that the temperature produces a great effect on the hammer.
Saidani A, Fourar A, Massouh F.
Influence of temperature on transient flow with cavitation in copper pipe-rig. Modeling Earth Systems and Environment [Internet]. 2021;8 :2449–2459.
Publisher's VersionAbstract
This article is particularly interested in the numerical modeling of water hammer in a hydraulic circuit, taking into account the prevailing water temperature. The study concerns the propagation velocity of the wave and the amplitude of unsteady phenomena encountered in the circuit, as well as the severity and collapse of cavitations that are also considered as major risks. To conjecture the consequences of these phenomena, we were led to simulate a single-phase and two-phase transient flows in a hydraulic copper pipe system in a temperature range of 4–95 °C. To do this, we have developed a solver for the dynamic and continuity equations’ resolution. The method of characteristics is chosen for its capacities to solve these equations. Its application shows that it is robust and adapted to the problem studied. Two cavitations’ models and column separation have been incorporated; in this case, the Discrete Vapor Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM). Moreover, in addition to the classic models of quasi-stable friction, of which the models of unsteady friction have been included, like the one based on the instantaneous acceleration proposed by Brunone and the one proposed by Vardy & Brown based on the convolution integral. Although single-phase and two-phase water hammers do not behave in the same way, the results obtained with these models show that the temperature produces a great effect on the hammer.
Saidani A, Fourar A, Massouh F.
Influence of temperature on transient flow with cavitation in copper pipe-rig. Modeling Earth Systems and Environment [Internet]. 2021;8 :2449–2459.
Publisher's VersionAbstract
This article is particularly interested in the numerical modeling of water hammer in a hydraulic circuit, taking into account the prevailing water temperature. The study concerns the propagation velocity of the wave and the amplitude of unsteady phenomena encountered in the circuit, as well as the severity and collapse of cavitations that are also considered as major risks. To conjecture the consequences of these phenomena, we were led to simulate a single-phase and two-phase transient flows in a hydraulic copper pipe system in a temperature range of 4–95 °C. To do this, we have developed a solver for the dynamic and continuity equations’ resolution. The method of characteristics is chosen for its capacities to solve these equations. Its application shows that it is robust and adapted to the problem studied. Two cavitations’ models and column separation have been incorporated; in this case, the Discrete Vapor Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM). Moreover, in addition to the classic models of quasi-stable friction, of which the models of unsteady friction have been included, like the one based on the instantaneous acceleration proposed by Brunone and the one proposed by Vardy & Brown based on the convolution integral. Although single-phase and two-phase water hammers do not behave in the same way, the results obtained with these models show that the temperature produces a great effect on the hammer.
Harizi K, Menani M-R, Chabour N, Labar S.
Initial assessment of the groundwater flow and budget using Geographic Information System, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria). Acque Sotterranee-Italian Journal of Groundwater [Internet]. 2021;10 :41-51.
Publisher's VersionAbstract
The Bouteldja coastal aquifer is one of the most important groundwater resources in North eastern of Algeria. The region is under a sub-humid climate with an average rainfall of 600-880 mm/y. The unconfined aquifer is constituted of Quaternary sands formations. The hydrogeological characteristics were determined based on previous reports. A very important inflow recharges the sandy aquifer in the Southeastern boundary, in relation to a fault network system linking the aquifer and the Obeira Lake area. Another inflow is observed at the Southern boundary in relation to the exchanges with the alluvial aquifer of Bouteldja. The purpose of the present study is to provide an initial assessment of the groundwater flow and water budget of this aquifer. To achieve this goal, a one-layer groundwater flow numerical model was developed using the MODFLOW-2005 code and the FREEWAT software, using the available data. The model was run in steady state conditions. Calibration was achieved using the piezometric measurements of May 2018 as calibration target. After several trials of manual calibrations, the model successfully simulated the groundwater flows directions and heads. Calibration efforts lead to an acceptable concordance (for the purpose of this study) between the estimated and calculated hydraulic conductivity and piezometric heads, except at the Eastern border. The analyses of the simulated inflow budget shows that aside the rainfall infiltration, exchanges with surface water bodies, the adjoining alluvial aquifer and the fault system provide a relevant amount of water. This significant recharge needs additional investigations. This numerical modeling exercise using MODFLOW, the FREEWAT software and GIS reached the objective of a preliminary description of the groundwater flow and it represents an acceptable starting point for more thorough hydrodynamic characterization of the Bouteldja coastal aquifer.
Harizi K, Menani M-R, Chabour N, Labar S.
Initial assessment of the groundwater flow and budget using Geographic Information System, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria). Acque Sotterranee-Italian Journal of Groundwater [Internet]. 2021;10 :41-51.
Publisher's VersionAbstract
The Bouteldja coastal aquifer is one of the most important groundwater resources in North eastern of Algeria. The region is under a sub-humid climate with an average rainfall of 600-880 mm/y. The unconfined aquifer is constituted of Quaternary sands formations. The hydrogeological characteristics were determined based on previous reports. A very important inflow recharges the sandy aquifer in the Southeastern boundary, in relation to a fault network system linking the aquifer and the Obeira Lake area. Another inflow is observed at the Southern boundary in relation to the exchanges with the alluvial aquifer of Bouteldja. The purpose of the present study is to provide an initial assessment of the groundwater flow and water budget of this aquifer. To achieve this goal, a one-layer groundwater flow numerical model was developed using the MODFLOW-2005 code and the FREEWAT software, using the available data. The model was run in steady state conditions. Calibration was achieved using the piezometric measurements of May 2018 as calibration target. After several trials of manual calibrations, the model successfully simulated the groundwater flows directions and heads. Calibration efforts lead to an acceptable concordance (for the purpose of this study) between the estimated and calculated hydraulic conductivity and piezometric heads, except at the Eastern border. The analyses of the simulated inflow budget shows that aside the rainfall infiltration, exchanges with surface water bodies, the adjoining alluvial aquifer and the fault system provide a relevant amount of water. This significant recharge needs additional investigations. This numerical modeling exercise using MODFLOW, the FREEWAT software and GIS reached the objective of a preliminary description of the groundwater flow and it represents an acceptable starting point for more thorough hydrodynamic characterization of the Bouteldja coastal aquifer.
Harizi K, Menani M-R, Chabour N, Labar S.
Initial assessment of the groundwater flow and budget using Geographic Information System, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria). Acque Sotterranee-Italian Journal of Groundwater [Internet]. 2021;10 :41-51.
Publisher's VersionAbstract
The Bouteldja coastal aquifer is one of the most important groundwater resources in North eastern of Algeria. The region is under a sub-humid climate with an average rainfall of 600-880 mm/y. The unconfined aquifer is constituted of Quaternary sands formations. The hydrogeological characteristics were determined based on previous reports. A very important inflow recharges the sandy aquifer in the Southeastern boundary, in relation to a fault network system linking the aquifer and the Obeira Lake area. Another inflow is observed at the Southern boundary in relation to the exchanges with the alluvial aquifer of Bouteldja. The purpose of the present study is to provide an initial assessment of the groundwater flow and water budget of this aquifer. To achieve this goal, a one-layer groundwater flow numerical model was developed using the MODFLOW-2005 code and the FREEWAT software, using the available data. The model was run in steady state conditions. Calibration was achieved using the piezometric measurements of May 2018 as calibration target. After several trials of manual calibrations, the model successfully simulated the groundwater flows directions and heads. Calibration efforts lead to an acceptable concordance (for the purpose of this study) between the estimated and calculated hydraulic conductivity and piezometric heads, except at the Eastern border. The analyses of the simulated inflow budget shows that aside the rainfall infiltration, exchanges with surface water bodies, the adjoining alluvial aquifer and the fault system provide a relevant amount of water. This significant recharge needs additional investigations. This numerical modeling exercise using MODFLOW, the FREEWAT software and GIS reached the objective of a preliminary description of the groundwater flow and it represents an acceptable starting point for more thorough hydrodynamic characterization of the Bouteldja coastal aquifer.
Harizi K, Menani M-R, Chabour N, Labar S.
Initial assessment of the groundwater flow and budget using Geographic Information System, MODFLOW-2005 and the FREEWAT modeling tool in Bouteldja coastal aquifer (Northern East of Algeria). Acque Sotterranee-Italian Journal of Groundwater [Internet]. 2021;10 :41-51.
Publisher's VersionAbstract
The Bouteldja coastal aquifer is one of the most important groundwater resources in North eastern of Algeria. The region is under a sub-humid climate with an average rainfall of 600-880 mm/y. The unconfined aquifer is constituted of Quaternary sands formations. The hydrogeological characteristics were determined based on previous reports. A very important inflow recharges the sandy aquifer in the Southeastern boundary, in relation to a fault network system linking the aquifer and the Obeira Lake area. Another inflow is observed at the Southern boundary in relation to the exchanges with the alluvial aquifer of Bouteldja. The purpose of the present study is to provide an initial assessment of the groundwater flow and water budget of this aquifer. To achieve this goal, a one-layer groundwater flow numerical model was developed using the MODFLOW-2005 code and the FREEWAT software, using the available data. The model was run in steady state conditions. Calibration was achieved using the piezometric measurements of May 2018 as calibration target. After several trials of manual calibrations, the model successfully simulated the groundwater flows directions and heads. Calibration efforts lead to an acceptable concordance (for the purpose of this study) between the estimated and calculated hydraulic conductivity and piezometric heads, except at the Eastern border. The analyses of the simulated inflow budget shows that aside the rainfall infiltration, exchanges with surface water bodies, the adjoining alluvial aquifer and the fault system provide a relevant amount of water. This significant recharge needs additional investigations. This numerical modeling exercise using MODFLOW, the FREEWAT software and GIS reached the objective of a preliminary description of the groundwater flow and it represents an acceptable starting point for more thorough hydrodynamic characterization of the Bouteldja coastal aquifer.
Makhlouf Adel K, Djamel T, Yahyaoui H.
INTEGRATION OF A GIS AND HEC-HMS MODELING TO IMPROVE URBAN RESILIENCE TO FLOOD RISK IN ALGIERS. ALGERIA. Analele Universităţii din Oradea, Seria Geografie [Internet]. 2021;31 (2) :100-109.
Publisher's VersionAbstract
-
The study of the phenomenon of flooding in an urban environment requires the integration of the city in its physical context, in this case the entire impluvium. Thus, the consideration of all the hydrological, morphometric and physical characteristics (topography, lithology, land cover...). In order to put in place appropriate measures to improve urban resilience and protect the population and their property in the capital of Algeria (City of Algiers), a hydrological modeling must be carried out upstream to evaluate the hydrological response of the watershed. This modeling was done using the auxiliary tool HEC-GEO HMS, an extension that works in a GIS environment (ArcGIS).
-
Copyright of Annals of the University of Oradea, Geography Series / Analele Universitatii din Oradea, Seria Geografie is the property of University of Oradea, Department of Geography, Tourism & Territorial Planning and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.
Makhlouf Adel K, Djamel T, Yahyaoui H.
INTEGRATION OF A GIS AND HEC-HMS MODELING TO IMPROVE URBAN RESILIENCE TO FLOOD RISK IN ALGIERS. ALGERIA. Analele Universităţii din Oradea, Seria Geografie [Internet]. 2021;31 (2) :100-109.
Publisher's VersionAbstract
-
The study of the phenomenon of flooding in an urban environment requires the integration of the city in its physical context, in this case the entire impluvium. Thus, the consideration of all the hydrological, morphometric and physical characteristics (topography, lithology, land cover...). In order to put in place appropriate measures to improve urban resilience and protect the population and their property in the capital of Algeria (City of Algiers), a hydrological modeling must be carried out upstream to evaluate the hydrological response of the watershed. This modeling was done using the auxiliary tool HEC-GEO HMS, an extension that works in a GIS environment (ArcGIS).
-
Copyright of Annals of the University of Oradea, Geography Series / Analele Universitatii din Oradea, Seria Geografie is the property of University of Oradea, Department of Geography, Tourism & Territorial Planning and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.
Makhlouf Adel K, Djamel T, Yahyaoui H.
INTEGRATION OF A GIS AND HEC-HMS MODELING TO IMPROVE URBAN RESILIENCE TO FLOOD RISK IN ALGIERS. ALGERIA. Analele Universităţii din Oradea, Seria Geografie [Internet]. 2021;31 (2) :100-109.
Publisher's VersionAbstract
-
The study of the phenomenon of flooding in an urban environment requires the integration of the city in its physical context, in this case the entire impluvium. Thus, the consideration of all the hydrological, morphometric and physical characteristics (topography, lithology, land cover...). In order to put in place appropriate measures to improve urban resilience and protect the population and their property in the capital of Algeria (City of Algiers), a hydrological modeling must be carried out upstream to evaluate the hydrological response of the watershed. This modeling was done using the auxiliary tool HEC-GEO HMS, an extension that works in a GIS environment (ArcGIS).
-
Copyright of Annals of the University of Oradea, Geography Series / Analele Universitatii din Oradea, Seria Geografie is the property of University of Oradea, Department of Geography, Tourism & Territorial Planning and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.
Berghout K, DRIDI H.
Integration of GIS and multi-criteria analysis for the assessment of the sensitivity to urbanization in Biskra and its neighboring oases, Algeria. GeoJournal [Internet]. 2021;87 :4219–4234.
Publisher's VersionAbstract
The main objective of this study is to establish a perspective orientation of urban growth in an arid region (Biskra and its neighboring oases) in south east Algeria by mobilizing the capacities of attractiveness. Taking into account climatic parameters (wind speed and temperatures) and physical parameters (land cover, slopes, and distance from roads), our approach is based on remote sensing techniques of satellite data classification and Geographic Information Systems for spatial analysis. By means of a multi-criteria analysis a decision support map of sites suitable for future urban dynamics was carried out. The results obtained show that 48% (or 71,782.25 ha) of the study area is located on land with very low sensitivity to urbanization. 9.45% at high sensitivity, 29.13% at medium sensitivity, while 13.41% at low sensitivity. The medium sensitivity zone occupies a considerable area estimated at 29.13% (a total of 43,577.58 ha). Spatially, this is reflected in uncontrolled urban sprawl to the detriment of oases and agricultural land, or land not suited to the requirements of climatic comfort in arid regions. This urbanization sensitivity map forms the basis of the prospective design of an urban model adapted and appropriate to the conditions of the oasis ecosystem through the integration of other climatic parameters.
Berghout K, DRIDI H.
Integration of GIS and multi-criteria analysis for the assessment of the sensitivity to urbanization in Biskra and its neighboring oases, Algeria. GeoJournal [Internet]. 2021;87 :4219–4234.
Publisher's VersionAbstract
The main objective of this study is to establish a perspective orientation of urban growth in an arid region (Biskra and its neighboring oases) in south east Algeria by mobilizing the capacities of attractiveness. Taking into account climatic parameters (wind speed and temperatures) and physical parameters (land cover, slopes, and distance from roads), our approach is based on remote sensing techniques of satellite data classification and Geographic Information Systems for spatial analysis. By means of a multi-criteria analysis a decision support map of sites suitable for future urban dynamics was carried out. The results obtained show that 48% (or 71,782.25 ha) of the study area is located on land with very low sensitivity to urbanization. 9.45% at high sensitivity, 29.13% at medium sensitivity, while 13.41% at low sensitivity. The medium sensitivity zone occupies a considerable area estimated at 29.13% (a total of 43,577.58 ha). Spatially, this is reflected in uncontrolled urban sprawl to the detriment of oases and agricultural land, or land not suited to the requirements of climatic comfort in arid regions. This urbanization sensitivity map forms the basis of the prospective design of an urban model adapted and appropriate to the conditions of the oasis ecosystem through the integration of other climatic parameters.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967.
Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967.
Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967.
Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967.
Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967.
Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18) :5967.
Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.