Publications by Year: 2022

2022
Mebarki N, Benmoussa S, Djeziri M, Mouss L{\"ıla-H. New Approach for Failure Prognosis Using a Bond Graph, Gaussian Mixture Model and Similarity Techniques. Processes [Internet]. 2022;10 (3). Publisher's VersionAbstract
This paper proposes a new approach for remaining useful life prediction that combines a bond graph, the Gaussian Mixture Model and similarity techniques to allow the use of both physical knowledge and the data available. The proposed method is based on the identification of relevant variables that carry information on degradation. To this end, the causal properties of the bond graph (BG) are first used to identify the relevant sensors through the fault observability. Then, a second stage of analysis based on statistical metrics is performed to reduce the number of sensors to only the ones carrying useful information for failure prognosis, thus, optimizing the data to be used in the prognosis phase. To generate data in the different system state, a simulator based on the developed BG is used. A Gaussian Mixture Model is then applied on the generated data for fault diagnosis and clustering. The Remaining Useful Life is estimated using a similarity technique. An application on a mechatronic system is considered for highlighting the effectiveness of the proposed approach.
Haouassi H, Haouassi H, Mehdaoui R, Maarouk TM, Chouhal O. A new binary grasshopper optimization algorithm for feature selection problem. Journal of King Saud University - Computer and Information Sciences [Internet]. 2022;34 (2). Publisher's VersionAbstract
The grasshopper optimization algorithm is one of the recently population-based optimization techniques inspired by the behaviours of grasshoppers in nature. It is an efficient optimization algorithm and since demonstrates excellent performance in solving continuous problems, but cannot resolve directly binary optimization problems. Many optimization problems have been modelled as binary problems since their decision variables varied in binary space such as feature selection in data classification. The main goal of feature selection is to find a small size subset of feature from a sizeable original set of features that optimize the classification accuracy. In this paper, a new binary variant of the grasshopper optimization algorithm is proposed and used for the feature subset selection problem. This proposed new binary grasshopper optimization algorithm is tested and compared to five well-known swarm-based algorithms used in feature selection problem. All these algorithms are implemented and experimented assessed on twenty data sets with various sizes. The results demonstrated that the proposed approach could outperform the other tested methods.
Bouzenita M, Mouss L-H, Melgani F, Bentrcia T. New fusion frameworks including explicit weighting functions for the remaining useful life prognostics. Expert Systems with Applications [Internet]. 2022;189 (1). Publisher's VersionAbstract

In the last recent years, a large community of researchers and industrial practitioners has been attracted by combining different prognostics models as such strategy results in boosted accuracy and robust performance compared to the exploitation of single models. The present work is devoted to the investigation of three new fusion schemes for the remaining useful life forecast. These integrated frameworks are based on aggregating a set of Gaussian process regression models thanks to the Induced Ordered Weighted Averaging Operators. The combination procedure is built upon three proposed analytical weighting schemes including exponential, logarithmic and inverse functions. In addition, the uncertainty aspect is supported in this work, where the proposed functions are used to weighted average the variances released from competitive Gaussian process regression models. The training data are transformed into gradient values, which are adopted as new training data instead of the original observations. A lithium-ion battery data set is used as a benchmark to prove the efficiency of the proposed weighting schemes. The obtained results are promising and may provide some guidelines for future advances in performing robust fusion options to accurately estimate the remaining useful life.

Lahmar H, Dahane M, Mouss N-K, Haoues M. Production planning optimisation in a sustainable hybrid manufacturing remanufacturing production system. Procedia Computer Science [Internet]. 2022;200 :1244-1253. Publisher's VersionAbstract
In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.
Lahmar H, Dahane M, Mouss N-K, Haoues M. Production planning optimisation in a sustainable hybrid manufacturing remanufacturing production system, in 3rd International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science 200. ScienceDirect ; 2022. Publisher's VersionAbstract

In this study, we investigate a production planning problem in hybrid manufacturing remanufacturing production system. The objective is the determine the best mix between the manufacturing of new products, and the remanufacturing of recovered products, based on economic and environmental considerations. It consists to determine the best manufacturing and remanufacturing plans to minimising the total economic cost (start-up and production costs of new and remanufactured products, storage costs of new and returned products and disposal costs) and the carbon emissions (new products, remanufactured products and disposed products). The hybrid system consists of a set of machines used to produce new products and remanufactured products of different grades (qualities). We assume that remanufacturing is more environmentally efficient, because it allows to reduce the disposal of used products. A multi-objective mathematical model is developed, and a non dominated sorting genetic algorithm (NSGA-II) based approach is proposed. Numerical experience is presented to study the impact of carbon emissions generated by new, remanufactured and disposed products, over a production horizon of several periods.

Benfriha A-I, Triqui-Sari L, Bougloula A-E, Bennekrouf M. Products exchange in a multi-level multi-period distribution network with limited storage capacity. 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) [Internet]. 2022. Publisher's VersionAbstract
Cooperation in distribution network has attracted the interest of researchers. In this study we analyse an inventory problem in distribution network, where we propose a cooperative platform that allow the members of the network to share and use local inventory of other members to meet their local demand. We develop a MIP models representing the traditional network and the network with the cooperative platform. Then we solve it using LINGO solver. We found that the proposed approach has reduced the total cost of the network and reduce the overstock and stock-out situation, which lead to improve the quality of service.
Djelloul I. Pronostic/diagnostic appliqué aux systèmes complexes dans un contexte d'optimisation des stratégies de maintenance. 2022.
HADJIDJ N, Benbrahim M, Mouss L-H. Selection The Appropriate Learning Machine For Fault Diagnosis With Big-Data Environment In Photovoltaic Systems. IGSCONG’22, Jun. 2022.
Hadjidj N , Benbrahim M, Mouss L-H. Selection The Appropriate Learning Machine For Fault Diagnosis With Big-Data Environment In Photovoltaic Systems. IGSCONG’22. Jun 2022. 2022.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M. A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Energy Conversion [Internet]. 2022;37 (2). Publisher's VersionAbstract
Deep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
AKSA K, Harrag M. Surveillance Des Zones Critiques Et Des Accès Non Autorisés En Utilisant La Technologie Rfid. khazzartech الاقتصاد الصناعي [Internet]. 2022;12 (1) :702-717. Publisher's VersionAbstract
La surveillance est la fonction d’observer toutes activités humaine ou environnementales dans le but de superviser, contrôler ou même réagir sur un cas particulier; ce qu’on appelle la supervision ou le monitoring. La technologie de la radio-identification, connue sous l’abréviation RFID (de l’anglais Radio Frequency IDentification), est l’une des technologies utilisées pour récupérer des données à distance de les mémoriser et même de les traiter. C’est une technologie d’actualité et l’une des technologies de l’industrie 4.0 qui s’intègre dans de nombreux domaines de la vie quotidienne notamment la surveillance et le contrôle d’accès. L’objectif de cet article est de montrer comment protéger et surveiller en temps réel des zones industrielles critiques et de tous types d’accès non autorisés de toute personne (employés, visiteurs…) en utilisant la technologie RFID et cela à travers des exemples de simulation à l’aide d’un simulateur dédié aux réseaux de capteurs.
Berghout T, Benbouzid M. A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics [Internet]. 2022;11 (7). Publisher's VersionAbstract
Prognosis and health management (PHM) are mandatory tasks for real-time monitoring of damage propagation and aging of operating systems during working conditions. More definitely, PHM simplifies conditional maintenance planning by assessing the actual state of health (SoH) through the level of aging indicators. In fact, an accurate estimate of SoH helps determine remaining useful life (RUL), which is the period between the present and the end of a system’s useful life. Traditional residue-based modeling approaches that rely on the interpretation of appropriate physical laws to simulate operating behaviors fail as the complexity of systems increases. Therefore, machine learning (ML) becomes an unquestionable alternative that employs the behavior of historical data to mimic a large number of SoHs under varying working conditions. In this context, the objective of this paper is twofold. First, to provide an overview of recent developments of RUL prediction while reviewing recent ML tools used for RUL prediction in different critical systems. Second, and more importantly, to ensure that the RUL prediction process from data acquisition to model building and evaluation is straightforward. This paper also provides step-by-step guidelines to help determine the appropriate solution for any specific type of driven data. This guide is followed by a classification of different types of ML tools to cover all the discussed cases. Ultimately, this review-based study uses these guidelines to determine learning model limitations, reconstruction challenges, and future prospects.
KADRI O, Benyahia A, Abdelhadi A. Tifinagh Handwriting Character Recognition Using a CNN Provided as a Web Service. International Journal of Cloud Applications and Computing (IJCAC) [Internet]. 2022;12 (1). Publisher's VersionAbstract
Many cloud providers offer very high precision services to exploit Optical Character Recognition (OCR). However, there is no provider offers Tifinagh Optical Character Recognition (OCR) as Web Services. Several works have been proposed to build powerful Tifinagh OCR. Unfortunately, there is no one developed as a Web Service. In this paper, we present a new architecture of Tifinagh Handwriting Recognition as a web service based on a deep learning model via Google Colab. For the implementation of our proposal, we used the new version of the TensorFlow library and a very large database of Tifinagh characters composed of 60,000 images from the Mohammed Vth University in Rabat. Experimental results show that the TensorFlow library based on a Tensor processing unit constitutes a very promising framework for developing fast and very precise Tifinagh OCR web services. The results show that our method based on convolutional neural network outperforms existing methods based on support vector machines and extreme learning machine.
Soltani K, Benzouai M, Mouss M-D. Use of Petri Nets to Model the Maintenance of Multi Site Compagny. International Congress of Energies and Engineering of Industrial ProcessesCEGPI’22 23 - 25 May. 2022.
Khaoula S, Messaoud B, Djamel MM. Use of Petri Nets to Model the Maintenance of Multi Site Compagny. International Congress of Energies and Engineering of Industrial ProcessesCEGPI’22, 23 - 25 May. 2022.
Zermane H. Web Fuzzy Based Autonomous Control System. 4th International Conference on Engineering Science and Technology (ICEST2022) 16th-17th of February. 2022.
Amrane M, Messast S, Demagh R. Analyse Numerique D’une Fondation Superficielle Reposant Sur Un Sol Non-Sature En Hypoplasticite. 5ème Colloque International sur les sols Non Saturés, UNSAT, 15-16 Mars. 2022.
Yahiaoui D, SAADI M, Bouzid T. Compressive Behavior of Concrete Containing Glass Fibers and Confined with Glass FRP Composites. International Journal of Concrete Structures and Materials [Internet]. 2022. Publisher's VersionAbstract
In this paper, numerous experimental tests were carried out to study the behavior of concrete containing glass fibers and confined with glass fiber-reinforced polymer (GFRP). Concrete specimens containing different fiber percentages ( 0.3 wt.%, 0.6 wt.%, 0.9 wt.% or 1.2 wt.%) and with different strengths of concrete (8.5 MPa, 16 MPa and 25 MPa) and different confinement levels (two, four and six layers of GFRP) were used as research parameters. The samples were tested to failure under pure axial compression. The results imply that the confinement effect with GFRP is relatively higher for concrete samples containing glass fiber (GFCC) with a percentage equal to 0.6 wt.%. The theoretical of stress ratios (fcc/fco) estimated by using existing ultimate strength models are found to be close to the experimental results for high strength of GFCC, but not close to the experimental results for low strength of GFCC.
Ounis HM, Bezih K. Confirmation according to several international codes on the perfect compatibility of the Algerian earthquake regulations with the seismic base isolation technique of the buildings. 2nd International Conference on Civil Engineering, Architecture and Sustainable infrastructure (ICCEASI-2022). February 09-10 [Internet]. 2022. Publisher's Version
Benaicha AC, Mansouri T, SAADI M, Yahiaoui D. Contribution à l'étude d'amélioration de la capacité portante d'un talus par des géogrilles et des ancrages en grilles. 1 er Séminaire National de Génie Civil et des Travaux Publics SNGCTP-1 [Internet]. 2022. Publisher's Version

Pages