Houamed H, Saidi L, Srairi F.
ECG signal denoising by fractional wavelet transform thresholding. Research on Biomedical Engineering [Internet]. 2020;36 :349–360.
Publisher's VersionAbstract
Introduction
The analysis of electrocardiogram (ECG) signals allows experts to diagnose several cardiac disorders. However, the accuracy of such diagnosis depends heavily on the signal quality. In this paper, an efficient method based on fractional wavelet decomposition coupled with thresholding techniques is proposed for noise removal.
Methods
The usual low-pass and high-pass filters of the wavelet transform are replaced by fractional-order ones. Thus, fractional wavelets are proposed, simulated, and compared to other wavelets for ECG denoising. The denoising process was made operational by the means of an appropriate choice of the wavelet transform coefficient thresholding and the wavelet decomposition level of the signal.
Results
Considering the relative error metrics, the best wavelet function for efficient denoising is the fractional one. In our study, we have used eight real ECG signals from the Physionet MITBIH. In order to prove the effectiveness of our method, we investigated the filtering of two types of noises, namely Gaussian white noise and power-line interference (PLI) noise. The proposed method removed the Gaussian white noise completely and had better performance on the PLI noise. Considering classical metrics of assessment, results show the advantage of the proposed method compared to other types of wavelets.
Conclusion
The proposed method is the most suitable one for removing PLI and Gaussian white noise from ECG signals with superior performance than other wavelets. Also, it can be applied for high-frequency denoising even without a priori frequency knowledge.
Hadef H, Djebabra M.
A conceptual framework for risk matrix capitalization. International Journal of System Assurance Engineering and Management [Internet]. 2020;11 :755–764.
Publisher's VersionAbstractResearch on risk matrices show that there is considerable diversity in the practice of designing risk matrices. This has led to serious problems of standardization and communication. Indeed, these problems affect at the same time on the development of matrices and in their exploitation in term of risk assessment. To solve these problems, this paper proposes an experience feedback method that aims to capitalize the feedback invariants resulting from the analysis of existing risk matrices. This capitalization allows developing a theoretical framework of the robust risk matrices design. The application of the proposed method for examples of matrices confirms the interest of articulating these risk matrices designs through an argument based on experience feedback. In this sense, the merit of the proposed experience feedback method is that it promotes the sharing of knowledge between the actors involved in a risk assessment.
Belmazouzi Y, Djebabra M, Hadef H.
Contribution to the ageing control of onshore oil and gas fields. Petroleum [Internet]. 2020;6 (3) :311-317.
Publisher's VersionAbstractThe ageing of the Algerian oil and gas (O&G) installations has led to many incidents. Such installations are over 30 years old (life cycle) and still in operation. To deal with this O&G crucial problem, the Algerian authorities have launched a rehabilitation and modernization schedule of these installations. Within the framework of this program, many audit operations are initiated to elaborate a general diagnosis of the works to be performed while optimizing production. In other words, industrial ageing risks shall be controlled. In the process safety management (PSM) context, the aim of this paper is to study ageing problem of the Algerian industrial installations through proposed indicators. Their prioritization adjusted by (TOPSIS) Technique for Order-Preference by Similarity to Ideal Solution method which allows identification of ageing control solutions of Algerian onshore fields.