2020
Soltani M, Aouag H, Mouss M-D.
Enhancement of the competitiveness and the financial capability of a manufacturing process through a new value stream mapping approach. International Journal of Productivity and Quality Management [Internet]. 2020;29 (4).
Publisher's VersionAbstractThe organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Soltani M, Aouag H, Mouss M-D.
Enhancement of the competitiveness and the financial capability of a manufacturing process through a new value stream mapping approach. International Journal of Productivity and Quality Management [Internet]. 2020;29 (4).
Publisher's VersionAbstractThe organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Soltani M, Aouag H, Mouss M-D.
Enhancement of the competitiveness and the financial capability of a manufacturing process through a new value stream mapping approach. International Journal of Productivity and Quality Management [Internet]. 2020;29 (4).
Publisher's VersionAbstractThe organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Soltani M, Aouag H, Mouss M-D.
Enhancement of the competitiveness and the financial capability of a manufacturing process through a new value stream mapping approach. International Journal of Productivity and Quality Management [Internet]. 2020;29 (4).
Publisher's VersionAbstractThe organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Soltani M, Aouag H, Mouss M-D.
Enhancement of the competitiveness and the financial capability of a manufacturing process through a new value stream mapping approach. International Journal of Productivity and Quality Management [Internet]. 2020;29 (4).
Publisher's VersionAbstractThe organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Soltani M, Aouag H, Mouss M-D.
Enhancement of the competitiveness and the financial capability of a manufacturing process through a new value stream mapping approach. International Journal of Productivity and Quality Management [Internet]. 2020;29 (4).
Publisher's VersionAbstractThe organisations having a futuristic look and aiming to impose their presence in the industrial field for a long possible term, are seeking for finding solutions linked to controlling their cash flow and assessing their competitiveness performances. Therefore, the purpose of this paper is to propose a new quality and cost value stream mapping for monitoring the costs consumption and assessing the competitiveness of a company. We use three key concepts namely life cycle costing for estimation of the most influential costs on the manufacturing process, the weighted DPMO and Sigma level for assessing the quality level and the competitiveness of the company. Finally, the data obtained are mapped using value stream mapping method for enabling the determination of dysfunctions in the cost and quality context.
Aouag H, Soltani M, Mouss M-D.
Enhancement of value stream mapping application process through using fuzzy DEMATEL and fuzzy QFD approaches: a case study considering economic and environmental perspectives. [Internet]. 2020;16 (3).
Publisher's VersionAbstractPurpose This paper aims to investigate an integrated approach that aims at enhancing the application process of value stream mapping (VSM) method. It also proposes an extended VSM called Economic and Environmental VSM(E-EVSM). The proposed approach highlights the improvement of economic and environmental performances. Design/methodology/approach The proposed approach has studied the integration of VSM, fuzzy decision-making trial and evaluation laboratory (DEMATEL) and fuzzy quality function deployment (QFD) to improve the economic and environmental performances of manufacturing processes. The VSM method is used for data collection and manufacturing process assessment, whereas fuzzy DEMATEL is used to analyse the current state map. Finally, fuzzy QFD is used to organize the improvement phase of VSM method. Findings The clear findings of this research prove the effectiveness of VSM method on the environmental and economic performances of manufacturing processes. In addition, the proposed approach will show the advantages of fuzzy DEMATEL and fuzzy QFD approaches in improving the application of the VSM method. Research limitations/implications The limitation of this study includes the lack of consideration of other dimensions such as social, technological and managerial. In addition, the proposed approach studied an average set of environmental and economic indicators. Originality/value The novelty of the proposed approach is proved by the development of an extended VSM method (E-EVSM). Also, the proposed approach contributes by a new methodology for analysing and improving the current state map of manufacturing processes.
Aouag H, Soltani M, Mouss M-D.
Enhancement of value stream mapping application process through using fuzzy DEMATEL and fuzzy QFD approaches: a case study considering economic and environmental perspectives. [Internet]. 2020;16 (3).
Publisher's VersionAbstractPurpose This paper aims to investigate an integrated approach that aims at enhancing the application process of value stream mapping (VSM) method. It also proposes an extended VSM called Economic and Environmental VSM(E-EVSM). The proposed approach highlights the improvement of economic and environmental performances. Design/methodology/approach The proposed approach has studied the integration of VSM, fuzzy decision-making trial and evaluation laboratory (DEMATEL) and fuzzy quality function deployment (QFD) to improve the economic and environmental performances of manufacturing processes. The VSM method is used for data collection and manufacturing process assessment, whereas fuzzy DEMATEL is used to analyse the current state map. Finally, fuzzy QFD is used to organize the improvement phase of VSM method. Findings The clear findings of this research prove the effectiveness of VSM method on the environmental and economic performances of manufacturing processes. In addition, the proposed approach will show the advantages of fuzzy DEMATEL and fuzzy QFD approaches in improving the application of the VSM method. Research limitations/implications The limitation of this study includes the lack of consideration of other dimensions such as social, technological and managerial. In addition, the proposed approach studied an average set of environmental and economic indicators. Originality/value The novelty of the proposed approach is proved by the development of an extended VSM method (E-EVSM). Also, the proposed approach contributes by a new methodology for analysing and improving the current state map of manufacturing processes.
Aouag H, Soltani M, Mouss M-D.
Enhancement of value stream mapping application process through using fuzzy DEMATEL and fuzzy QFD approaches: a case study considering economic and environmental perspectives. [Internet]. 2020;16 (3).
Publisher's VersionAbstractPurpose This paper aims to investigate an integrated approach that aims at enhancing the application process of value stream mapping (VSM) method. It also proposes an extended VSM called Economic and Environmental VSM(E-EVSM). The proposed approach highlights the improvement of economic and environmental performances. Design/methodology/approach The proposed approach has studied the integration of VSM, fuzzy decision-making trial and evaluation laboratory (DEMATEL) and fuzzy quality function deployment (QFD) to improve the economic and environmental performances of manufacturing processes. The VSM method is used for data collection and manufacturing process assessment, whereas fuzzy DEMATEL is used to analyse the current state map. Finally, fuzzy QFD is used to organize the improvement phase of VSM method. Findings The clear findings of this research prove the effectiveness of VSM method on the environmental and economic performances of manufacturing processes. In addition, the proposed approach will show the advantages of fuzzy DEMATEL and fuzzy QFD approaches in improving the application of the VSM method. Research limitations/implications The limitation of this study includes the lack of consideration of other dimensions such as social, technological and managerial. In addition, the proposed approach studied an average set of environmental and economic indicators. Originality/value The novelty of the proposed approach is proved by the development of an extended VSM method (E-EVSM). Also, the proposed approach contributes by a new methodology for analysing and improving the current state map of manufacturing processes.
zemouri N, Bouzgou H, Gueymard C.
Global Solar Radiation Forecasting With Evolutionary Autoregressive Models. 4th International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’20) [Internet]. 2020.
Publisher's VersionAbstractNowadays, the integration of solar power into the electrical grids is vital to increase energy efficiency and profitability. Effective usage of the instable solar production of photovoltaic (PV) systems necessitates trustworthy forecasting information. Actually, this addition can gives an ameliorated service quality if the solar radiation variation can be forecasted accurately. In this paper, we propose a new forecasting approach that integrates Autoregressive Moving Average (ARMA) and Genetic algorithms (GA) to make benefit of both of them in order to forecast Global Horizontal Irradiance (GHI) component. The proposed approach is compared with the standard ARMA model. The experimental results show that, the proposed approach outperforms the classical ARMA models in terms of mean absolute percentage error (MAPE), root mean squared error (RMSE) coefficient of determination (R)2 and the normalized mean squared error (NMSE).
zemouri N, Bouzgou H, Gueymard C.
Global Solar Radiation Forecasting With Evolutionary Autoregressive Models. 4th International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’20) [Internet]. 2020.
Publisher's VersionAbstractNowadays, the integration of solar power into the electrical grids is vital to increase energy efficiency and profitability. Effective usage of the instable solar production of photovoltaic (PV) systems necessitates trustworthy forecasting information. Actually, this addition can gives an ameliorated service quality if the solar radiation variation can be forecasted accurately. In this paper, we propose a new forecasting approach that integrates Autoregressive Moving Average (ARMA) and Genetic algorithms (GA) to make benefit of both of them in order to forecast Global Horizontal Irradiance (GHI) component. The proposed approach is compared with the standard ARMA model. The experimental results show that, the proposed approach outperforms the classical ARMA models in terms of mean absolute percentage error (MAPE), root mean squared error (RMSE) coefficient of determination (R)2 and the normalized mean squared error (NMSE).
zemouri N, Bouzgou H, Gueymard C.
Global Solar Radiation Forecasting With Evolutionary Autoregressive Models. 4th International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’20) [Internet]. 2020.
Publisher's VersionAbstractNowadays, the integration of solar power into the electrical grids is vital to increase energy efficiency and profitability. Effective usage of the instable solar production of photovoltaic (PV) systems necessitates trustworthy forecasting information. Actually, this addition can gives an ameliorated service quality if the solar radiation variation can be forecasted accurately. In this paper, we propose a new forecasting approach that integrates Autoregressive Moving Average (ARMA) and Genetic algorithms (GA) to make benefit of both of them in order to forecast Global Horizontal Irradiance (GHI) component. The proposed approach is compared with the standard ARMA model. The experimental results show that, the proposed approach outperforms the classical ARMA models in terms of mean absolute percentage error (MAPE), root mean squared error (RMSE) coefficient of determination (R)2 and the normalized mean squared error (NMSE).
Ghrieb A-O, Kourd Y, Messaoudi K, Mouss M-D, Bakir T.
HARDWARE IMPLEMENTATION USING XSG OF NEW FAULT DETECTION METHOD APPLIED TO ROBOT MANIPULATOR. Mechatronic Systems and Control [Internet]. 2020.
Publisher's VersionAbstractThis paper presents a new hardware implementation of a supervision system used in robot manipulators with two degrees of freedom. In addition to the simulation results, the new System Generator tool of Xilinx r is used to ensure self-generation of HDL codes. This code is used to configure field programmable gate arrays (FPGA) devices in the loop, and the supervision system is used mainly to ensure real-time reconfiguration of robots. In the proposed system, we used a new fault detection (FD) method for a viscous friction fault in the supervised robot combined with a fault-tolerance control method. The first module, based on residual analysis, is used to FD and to properly estimate the necessary corrections of the second module. For data transmission between the supervisor and the supervised robots, we used an approach based on the transmission control protocol. The simulation results show that the proposed method adjusts the fault effect using information transferred from the remote supervisor robot. The hardware implementation generated using Xilinx r System Generator is used to validate the proposed contribution and to ensure real-time processing in the case of industrial robots. The simulation results and the response times of both proposed systems are compared and discussed.
Ghrieb A-O, Kourd Y, Messaoudi K, Mouss M-D, Bakir T.
HARDWARE IMPLEMENTATION USING XSG OF NEW FAULT DETECTION METHOD APPLIED TO ROBOT MANIPULATOR. Mechatronic Systems and Control [Internet]. 2020.
Publisher's VersionAbstractThis paper presents a new hardware implementation of a supervision system used in robot manipulators with two degrees of freedom. In addition to the simulation results, the new System Generator tool of Xilinx r is used to ensure self-generation of HDL codes. This code is used to configure field programmable gate arrays (FPGA) devices in the loop, and the supervision system is used mainly to ensure real-time reconfiguration of robots. In the proposed system, we used a new fault detection (FD) method for a viscous friction fault in the supervised robot combined with a fault-tolerance control method. The first module, based on residual analysis, is used to FD and to properly estimate the necessary corrections of the second module. For data transmission between the supervisor and the supervised robots, we used an approach based on the transmission control protocol. The simulation results show that the proposed method adjusts the fault effect using information transferred from the remote supervisor robot. The hardware implementation generated using Xilinx r System Generator is used to validate the proposed contribution and to ensure real-time processing in the case of industrial robots. The simulation results and the response times of both proposed systems are compared and discussed.
Ghrieb A-O, Kourd Y, Messaoudi K, Mouss M-D, Bakir T.
HARDWARE IMPLEMENTATION USING XSG OF NEW FAULT DETECTION METHOD APPLIED TO ROBOT MANIPULATOR. Mechatronic Systems and Control [Internet]. 2020.
Publisher's VersionAbstractThis paper presents a new hardware implementation of a supervision system used in robot manipulators with two degrees of freedom. In addition to the simulation results, the new System Generator tool of Xilinx r is used to ensure self-generation of HDL codes. This code is used to configure field programmable gate arrays (FPGA) devices in the loop, and the supervision system is used mainly to ensure real-time reconfiguration of robots. In the proposed system, we used a new fault detection (FD) method for a viscous friction fault in the supervised robot combined with a fault-tolerance control method. The first module, based on residual analysis, is used to FD and to properly estimate the necessary corrections of the second module. For data transmission between the supervisor and the supervised robots, we used an approach based on the transmission control protocol. The simulation results show that the proposed method adjusts the fault effect using information transferred from the remote supervisor robot. The hardware implementation generated using Xilinx r System Generator is used to validate the proposed contribution and to ensure real-time processing in the case of industrial robots. The simulation results and the response times of both proposed systems are compared and discussed.
Ghrieb A-O, Kourd Y, Messaoudi K, Mouss M-D, Bakir T.
HARDWARE IMPLEMENTATION USING XSG OF NEW FAULT DETECTION METHOD APPLIED TO ROBOT MANIPULATOR. Mechatronic Systems and Control [Internet]. 2020.
Publisher's VersionAbstractThis paper presents a new hardware implementation of a supervision system used in robot manipulators with two degrees of freedom. In addition to the simulation results, the new System Generator tool of Xilinx r is used to ensure self-generation of HDL codes. This code is used to configure field programmable gate arrays (FPGA) devices in the loop, and the supervision system is used mainly to ensure real-time reconfiguration of robots. In the proposed system, we used a new fault detection (FD) method for a viscous friction fault in the supervised robot combined with a fault-tolerance control method. The first module, based on residual analysis, is used to FD and to properly estimate the necessary corrections of the second module. For data transmission between the supervisor and the supervised robots, we used an approach based on the transmission control protocol. The simulation results show that the proposed method adjusts the fault effect using information transferred from the remote supervisor robot. The hardware implementation generated using Xilinx r System Generator is used to validate the proposed contribution and to ensure real-time processing in the case of industrial robots. The simulation results and the response times of both proposed systems are compared and discussed.
Ghrieb A-O, Kourd Y, Messaoudi K, Mouss M-D, Bakir T.
HARDWARE IMPLEMENTATION USING XSG OF NEW FAULT DETECTION METHOD APPLIED TO ROBOT MANIPULATOR. Mechatronic Systems and Control [Internet]. 2020.
Publisher's VersionAbstractThis paper presents a new hardware implementation of a supervision system used in robot manipulators with two degrees of freedom. In addition to the simulation results, the new System Generator tool of Xilinx r is used to ensure self-generation of HDL codes. This code is used to configure field programmable gate arrays (FPGA) devices in the loop, and the supervision system is used mainly to ensure real-time reconfiguration of robots. In the proposed system, we used a new fault detection (FD) method for a viscous friction fault in the supervised robot combined with a fault-tolerance control method. The first module, based on residual analysis, is used to FD and to properly estimate the necessary corrections of the second module. For data transmission between the supervisor and the supervised robots, we used an approach based on the transmission control protocol. The simulation results show that the proposed method adjusts the fault effect using information transferred from the remote supervisor robot. The hardware implementation generated using Xilinx r System Generator is used to validate the proposed contribution and to ensure real-time processing in the case of industrial robots. The simulation results and the response times of both proposed systems are compared and discussed.
Benaggoune K, Mouss LH, Abdessemed A, Bensakhria M.
Holonic agent-based approach for system-level remaining useful life estimation with stochastic dependence. International Journal of Computer Integrated Manufacturing [Internet]. 2020;33 (10).
Publisher's VersionAbstractThe emerging behavior in complex systems is more complicated than the sum of the behaviors of their constituent parts. This behavior involves the propagation of faults between the parts and requires information about how the parts are related. Therefore, the prognostic function at the system-level becomes a very tough task. Conventional approaches focus on identifying faults and their probabilities of occurrence. In complex systems, this can create statistical limitations for prognostic function where component fault relies on the connected components in the system and their state of degradations. In this paper, a new Holonic agent-based approach is proposed for system-level remaining useful life (S-RUL) estimation with different dependencies. As the proposed approach can capture fault/failure mode propagation and interactions that occur in the system all the way up through the component and eventually system level, it can work as an automatic testing-tool in reliability tasks. Through a numerical example, the implementation is done in Java Agent Development Environment with and without consideration of stochastic dependence. Results show that the indirect effect of influencing components has a massive impact on the S-RUL, and the impact of stochastic dependencies should not be ignored, especially in the early stages of the system design.
Benaggoune K, Mouss LH, Abdessemed A, Bensakhria M.
Holonic agent-based approach for system-level remaining useful life estimation with stochastic dependence. International Journal of Computer Integrated Manufacturing [Internet]. 2020;33 (10).
Publisher's VersionAbstractThe emerging behavior in complex systems is more complicated than the sum of the behaviors of their constituent parts. This behavior involves the propagation of faults between the parts and requires information about how the parts are related. Therefore, the prognostic function at the system-level becomes a very tough task. Conventional approaches focus on identifying faults and their probabilities of occurrence. In complex systems, this can create statistical limitations for prognostic function where component fault relies on the connected components in the system and their state of degradations. In this paper, a new Holonic agent-based approach is proposed for system-level remaining useful life (S-RUL) estimation with different dependencies. As the proposed approach can capture fault/failure mode propagation and interactions that occur in the system all the way up through the component and eventually system level, it can work as an automatic testing-tool in reliability tasks. Through a numerical example, the implementation is done in Java Agent Development Environment with and without consideration of stochastic dependence. Results show that the indirect effect of influencing components has a massive impact on the S-RUL, and the impact of stochastic dependencies should not be ignored, especially in the early stages of the system design.
Benaggoune K, Mouss LH, Abdessemed A, Bensakhria M.
Holonic agent-based approach for system-level remaining useful life estimation with stochastic dependence. International Journal of Computer Integrated Manufacturing [Internet]. 2020;33 (10).
Publisher's VersionAbstractThe emerging behavior in complex systems is more complicated than the sum of the behaviors of their constituent parts. This behavior involves the propagation of faults between the parts and requires information about how the parts are related. Therefore, the prognostic function at the system-level becomes a very tough task. Conventional approaches focus on identifying faults and their probabilities of occurrence. In complex systems, this can create statistical limitations for prognostic function where component fault relies on the connected components in the system and their state of degradations. In this paper, a new Holonic agent-based approach is proposed for system-level remaining useful life (S-RUL) estimation with different dependencies. As the proposed approach can capture fault/failure mode propagation and interactions that occur in the system all the way up through the component and eventually system level, it can work as an automatic testing-tool in reliability tasks. Through a numerical example, the implementation is done in Java Agent Development Environment with and without consideration of stochastic dependence. Results show that the indirect effect of influencing components has a massive impact on the S-RUL, and the impact of stochastic dependencies should not be ignored, especially in the early stages of the system design.