2020
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M.
User behaviour-based approach to define mobility devices needs of disabled person in Algeria: a questionnaire study. Disability and Rehabilitation: Assistive Technology [Internet]. 2020;17 (4) :453-461.
Publisher's VersionAbstractThis article showcases the adaptability of existing mobility devices for the Algerian disabled population. It aims to develop a behavior model of disabled Algerian persons through (1) development of a theoretical model based on literature review and (2) improvement of this model by using local collected data from our developed questionnaire.
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M.
User behaviour-based approach to define mobility devices needs of disabled person in Algeria: a questionnaire study. Disability and Rehabilitation: Assistive Technology [Internet]. 2020;17 (4) :453-461.
Publisher's VersionAbstractThis article showcases the adaptability of existing mobility devices for the Algerian disabled population. It aims to develop a behavior model of disabled Algerian persons through (1) development of a theoretical model based on literature review and (2) improvement of this model by using local collected data from our developed questionnaire.
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M.
User behaviour-based approach to define mobility devices needs of disabled person in Algeria: a questionnaire study. Disability and Rehabilitation: Assistive Technology [Internet]. 2020;17 (4) :453-461.
Publisher's VersionAbstractThis article showcases the adaptability of existing mobility devices for the Algerian disabled population. It aims to develop a behavior model of disabled Algerian persons through (1) development of a theoretical model based on literature review and (2) improvement of this model by using local collected data from our developed questionnaire.
Bezih K, Chateauneuf A, Demagh R.
Effect of Long-Term Soil Deformations on RC Structures Including Soil-Structure Interaction. Civil Engineering Journal [Internet]. 2020;6 (12).
Publisher's VersionAbstractLifetime service of Reinforced Concrete (RC) structures is of major interest. It depends on the action of the superstructure and the response of soil contact at the same time. Therefore, it is necessary to consider the soil-structure interaction in the safety analysis of the RC structures to ensure reliable and economical design. In this paper, a finite element model of soil-structure interaction is developed. This model addresses the effect of long-term soil deformations on the structural safety of RC structures. It is also applied to real RC structures where soil-structure interaction is considered in the function of time. The modeling of the mechanical analysis of the soil-structure system is implemented as a one-dimensional model of a spring element to simulate a real case of RC continuous beams. The finite element method is used in this model to address the nonlinear time behavior of the soil and to calculate the consolidation settlement at the support-sections and the bending moment of RC structures girders. Numerical simulation tests with different loading services were performed on three types of soft soils with several compressibility parameters. This is done for homogeneous and heterogeneous soils. The finite element model of soil-structure interaction provides a practical approach to show and to quantify; (1) the importance of the variability of the compressibility parameters, and (2) the heterogeneity soil behavior in the safety RC structures assessment. It also shows a significant impact of soil-structure interaction, especially with nonlinear soil behavior versus the time on the design rules of redundant RC structures.
Bezih K, Chateauneuf A, Demagh R.
Effect of Long-Term Soil Deformations on RC Structures Including Soil-Structure Interaction. Civil Engineering Journal [Internet]. 2020;6 (12).
Publisher's VersionAbstractLifetime service of Reinforced Concrete (RC) structures is of major interest. It depends on the action of the superstructure and the response of soil contact at the same time. Therefore, it is necessary to consider the soil-structure interaction in the safety analysis of the RC structures to ensure reliable and economical design. In this paper, a finite element model of soil-structure interaction is developed. This model addresses the effect of long-term soil deformations on the structural safety of RC structures. It is also applied to real RC structures where soil-structure interaction is considered in the function of time. The modeling of the mechanical analysis of the soil-structure system is implemented as a one-dimensional model of a spring element to simulate a real case of RC continuous beams. The finite element method is used in this model to address the nonlinear time behavior of the soil and to calculate the consolidation settlement at the support-sections and the bending moment of RC structures girders. Numerical simulation tests with different loading services were performed on three types of soft soils with several compressibility parameters. This is done for homogeneous and heterogeneous soils. The finite element model of soil-structure interaction provides a practical approach to show and to quantify; (1) the importance of the variability of the compressibility parameters, and (2) the heterogeneity soil behavior in the safety RC structures assessment. It also shows a significant impact of soil-structure interaction, especially with nonlinear soil behavior versus the time on the design rules of redundant RC structures.
Bezih K, Chateauneuf A, Demagh R.
Effect of Long-Term Soil Deformations on RC Structures Including Soil-Structure Interaction. Civil Engineering Journal [Internet]. 2020;6 (12).
Publisher's VersionAbstractLifetime service of Reinforced Concrete (RC) structures is of major interest. It depends on the action of the superstructure and the response of soil contact at the same time. Therefore, it is necessary to consider the soil-structure interaction in the safety analysis of the RC structures to ensure reliable and economical design. In this paper, a finite element model of soil-structure interaction is developed. This model addresses the effect of long-term soil deformations on the structural safety of RC structures. It is also applied to real RC structures where soil-structure interaction is considered in the function of time. The modeling of the mechanical analysis of the soil-structure system is implemented as a one-dimensional model of a spring element to simulate a real case of RC continuous beams. The finite element method is used in this model to address the nonlinear time behavior of the soil and to calculate the consolidation settlement at the support-sections and the bending moment of RC structures girders. Numerical simulation tests with different loading services were performed on three types of soft soils with several compressibility parameters. This is done for homogeneous and heterogeneous soils. The finite element model of soil-structure interaction provides a practical approach to show and to quantify; (1) the importance of the variability of the compressibility parameters, and (2) the heterogeneity soil behavior in the safety RC structures assessment. It also shows a significant impact of soil-structure interaction, especially with nonlinear soil behavior versus the time on the design rules of redundant RC structures.
MANSOUR T, Boufarh R, SAAD D.
Experimental model to assess the bearing capacity of inclined loaded foundation near slope. 3rd Conference of the Arabian Journal of Geosciences (CAJG), held online, on 2-5 November [Internet]. 2020.
Publisher's Version MANSOUR T, Boufarh R, SAAD D.
Experimental model to assess the bearing capacity of inclined loaded foundation near slope. 3rd Conference of the Arabian Journal of Geosciences (CAJG), held online, on 2-5 November [Internet]. 2020.
Publisher's Version MANSOUR T, Boufarh R, SAAD D.
Experimental model to assess the bearing capacity of inclined loaded foundation near slope. 3rd Conference of the Arabian Journal of Geosciences (CAJG), held online, on 2-5 November [Internet]. 2020.
Publisher's Version Amrane M, Messast S, Demagh R.
Improvement of a Hypoplastic Model for Granular Materials under High Confining Pressures. Geotechnical and Geological Engineering [Internet]. 2020;38 :3761–3771.
Publisher's VersionAbstractThe behavior of granular materials during loading depends on the level of stresses. When confining pressure increases, the peak shear strength, the residual shear strength and the stiffness gradually decrease; besides, the volumetric behavior is shown to be influenced by the stress level. In this paper, such effects, due to changes in stress levels, have been incorporated into a modified von Wolffersdorff hypoplastic model. For this purpose, reference void ratios and exponent α and β, the parameters of the original hypoplastic model are modified using experimental data. The performance of the proposed model is demonstrated by using simulated triaxial tests on Hostun sand with cell pressures up to 15 MPa. The study shows the ability of the improved model to highlight the behavior characteristics of granular materials in dilatancy and (peak) resistance under high stress better than the original model.
Amrane M, Messast S, Demagh R.
Improvement of a Hypoplastic Model for Granular Materials under High Confining Pressures. Geotechnical and Geological Engineering [Internet]. 2020;38 :3761–3771.
Publisher's VersionAbstractThe behavior of granular materials during loading depends on the level of stresses. When confining pressure increases, the peak shear strength, the residual shear strength and the stiffness gradually decrease; besides, the volumetric behavior is shown to be influenced by the stress level. In this paper, such effects, due to changes in stress levels, have been incorporated into a modified von Wolffersdorff hypoplastic model. For this purpose, reference void ratios and exponent α and β, the parameters of the original hypoplastic model are modified using experimental data. The performance of the proposed model is demonstrated by using simulated triaxial tests on Hostun sand with cell pressures up to 15 MPa. The study shows the ability of the improved model to highlight the behavior characteristics of granular materials in dilatancy and (peak) resistance under high stress better than the original model.
Amrane M, Messast S, Demagh R.
Improvement of a Hypoplastic Model for Granular Materials under High Confining Pressures. Geotechnical and Geological Engineering [Internet]. 2020;38 :3761–3771.
Publisher's VersionAbstractThe behavior of granular materials during loading depends on the level of stresses. When confining pressure increases, the peak shear strength, the residual shear strength and the stiffness gradually decrease; besides, the volumetric behavior is shown to be influenced by the stress level. In this paper, such effects, due to changes in stress levels, have been incorporated into a modified von Wolffersdorff hypoplastic model. For this purpose, reference void ratios and exponent α and β, the parameters of the original hypoplastic model are modified using experimental data. The performance of the proposed model is demonstrated by using simulated triaxial tests on Hostun sand with cell pressures up to 15 MPa. The study shows the ability of the improved model to highlight the behavior characteristics of granular materials in dilatancy and (peak) resistance under high stress better than the original model.
Sekhri K, Yahiaoui D, Abbeche K.
Inelastic Response of Soil-Pile-Structure Interaction System under Lateral Loading: A Parametric Study. Jordan Journal of Civil Engineering [Internet]. 2020;14 (2).
Publisher's VersionAbstractSoil-structure interaction is the key to study the behavior of structures under static or dynamic loading. The pile foundation is adopted to transfer loads from the structure to the soil when the structure is embedded in a weak soil stratum. Soil-pile system has a nonlinear behavior; thus, it is more complicated to understand. This study focuses on the numerical investigation of interaction of soil–pile–structure system (ISPS) and interaction of soil–pile system (ISP) under lateral loads. Nonlinear static analysis is carried out considering the lateral capacity of ISPS and ISP systems under lateral loading using pushover analysis. A parametric study concerning different types of axial loading, pile length and pile radius, as well as longitudinal steel ratio in different types of sand is conducted to observe the response of (ISPS) and (ISP) systems. Besides that, lateral capacity deflection and moment curves, as well as the formation of plastic hinge are evaluated for ISPS and ISP systems for a typical pile and various soil types and their results are presented. The results show that the lateral capacity is influenced by the parametric study.
Sekhri K, Yahiaoui D, Abbeche K.
Inelastic Response of Soil-Pile-Structure Interaction System under Lateral Loading: A Parametric Study. Jordan Journal of Civil Engineering [Internet]. 2020;14 (2).
Publisher's VersionAbstractSoil-structure interaction is the key to study the behavior of structures under static or dynamic loading. The pile foundation is adopted to transfer loads from the structure to the soil when the structure is embedded in a weak soil stratum. Soil-pile system has a nonlinear behavior; thus, it is more complicated to understand. This study focuses on the numerical investigation of interaction of soil–pile–structure system (ISPS) and interaction of soil–pile system (ISP) under lateral loads. Nonlinear static analysis is carried out considering the lateral capacity of ISPS and ISP systems under lateral loading using pushover analysis. A parametric study concerning different types of axial loading, pile length and pile radius, as well as longitudinal steel ratio in different types of sand is conducted to observe the response of (ISPS) and (ISP) systems. Besides that, lateral capacity deflection and moment curves, as well as the formation of plastic hinge are evaluated for ISPS and ISP systems for a typical pile and various soil types and their results are presented. The results show that the lateral capacity is influenced by the parametric study.
Sekhri K, Yahiaoui D, Abbeche K.
Inelastic Response of Soil-Pile-Structure Interaction System under Lateral Loading: A Parametric Study. Jordan Journal of Civil Engineering [Internet]. 2020;14 (2).
Publisher's VersionAbstractSoil-structure interaction is the key to study the behavior of structures under static or dynamic loading. The pile foundation is adopted to transfer loads from the structure to the soil when the structure is embedded in a weak soil stratum. Soil-pile system has a nonlinear behavior; thus, it is more complicated to understand. This study focuses on the numerical investigation of interaction of soil–pile–structure system (ISPS) and interaction of soil–pile system (ISP) under lateral loads. Nonlinear static analysis is carried out considering the lateral capacity of ISPS and ISP systems under lateral loading using pushover analysis. A parametric study concerning different types of axial loading, pile length and pile radius, as well as longitudinal steel ratio in different types of sand is conducted to observe the response of (ISPS) and (ISP) systems. Besides that, lateral capacity deflection and moment curves, as well as the formation of plastic hinge are evaluated for ISPS and ISP systems for a typical pile and various soil types and their results are presented. The results show that the lateral capacity is influenced by the parametric study.
Bouatia M, Demagh R, Derriche Z.
Structural Behavior of Pipelines Buried in Expansive Soils under Rainfall Infiltration (Part I: Transverse Behavior). Civil Engineering Journal [Internet]. 2020.
Publisher's VersionAbstractLandslides, fault movements as well as shrink/swell soil displacements can exert important additional loadings on soil buried structures such as pipelines. These loadings may damage the buried structures whenever they reach the strength limits of the structure material. This paper presents a two-dimensional plane-strain finite element analysis of an 800 mm diameter water supply pipeline buried within the expansive clay of the Ain-Tine area (Mila, Algeria), considering the unsaturated behavior of the soil under a rainfall infiltration of 4 mm/day intensity and which lasts for different time durations (8, 15 and 30 days). The simulations were carried out using the commercial software module SIGMA/W and considering different initial soil suction conditions P1, P2, P3 and P4. The soil surface heave and the radial induced forces on the pipeline ring (i.e., Axial , Shear forces and bending moments ) results indicated that following the changes of suction the rainfall infiltration can cause considerable additional loads on the buried pipeline. Moreover, these loads are proportionally related to the initial soil suction conditions as well as to the rainfall infiltration time duration. The study highlighted that the unsaturated behavior of expansive soils because of their volume instability are very sensitive to climatic conditions and can exert adverse effects on pipelines buried within such soils. As a result, consistent pipeline design should seriously consider the study of the effect of the climatic conditions on the overall stability of the pipeline structure.
Bouatia M, Demagh R, Derriche Z.
Structural Behavior of Pipelines Buried in Expansive Soils under Rainfall Infiltration (Part I: Transverse Behavior). Civil Engineering Journal [Internet]. 2020.
Publisher's VersionAbstractLandslides, fault movements as well as shrink/swell soil displacements can exert important additional loadings on soil buried structures such as pipelines. These loadings may damage the buried structures whenever they reach the strength limits of the structure material. This paper presents a two-dimensional plane-strain finite element analysis of an 800 mm diameter water supply pipeline buried within the expansive clay of the Ain-Tine area (Mila, Algeria), considering the unsaturated behavior of the soil under a rainfall infiltration of 4 mm/day intensity and which lasts for different time durations (8, 15 and 30 days). The simulations were carried out using the commercial software module SIGMA/W and considering different initial soil suction conditions P1, P2, P3 and P4. The soil surface heave and the radial induced forces on the pipeline ring (i.e., Axial , Shear forces and bending moments ) results indicated that following the changes of suction the rainfall infiltration can cause considerable additional loads on the buried pipeline. Moreover, these loads are proportionally related to the initial soil suction conditions as well as to the rainfall infiltration time duration. The study highlighted that the unsaturated behavior of expansive soils because of their volume instability are very sensitive to climatic conditions and can exert adverse effects on pipelines buried within such soils. As a result, consistent pipeline design should seriously consider the study of the effect of the climatic conditions on the overall stability of the pipeline structure.
Bouatia M, Demagh R, Derriche Z.
Structural Behavior of Pipelines Buried in Expansive Soils under Rainfall Infiltration (Part I: Transverse Behavior). Civil Engineering Journal [Internet]. 2020.
Publisher's VersionAbstractLandslides, fault movements as well as shrink/swell soil displacements can exert important additional loadings on soil buried structures such as pipelines. These loadings may damage the buried structures whenever they reach the strength limits of the structure material. This paper presents a two-dimensional plane-strain finite element analysis of an 800 mm diameter water supply pipeline buried within the expansive clay of the Ain-Tine area (Mila, Algeria), considering the unsaturated behavior of the soil under a rainfall infiltration of 4 mm/day intensity and which lasts for different time durations (8, 15 and 30 days). The simulations were carried out using the commercial software module SIGMA/W and considering different initial soil suction conditions P1, P2, P3 and P4. The soil surface heave and the radial induced forces on the pipeline ring (i.e., Axial , Shear forces and bending moments ) results indicated that following the changes of suction the rainfall infiltration can cause considerable additional loads on the buried pipeline. Moreover, these loads are proportionally related to the initial soil suction conditions as well as to the rainfall infiltration time duration. The study highlighted that the unsaturated behavior of expansive soils because of their volume instability are very sensitive to climatic conditions and can exert adverse effects on pipelines buried within such soils. As a result, consistent pipeline design should seriously consider the study of the effect of the climatic conditions on the overall stability of the pipeline structure.