Publications

2020
Benaggoune K, Meraghni S, Ma J, Mouss L-H, Zerhouni N. Post Prognostic Decision for Predictive Maintenance Planning with Remaining Useful Life Uncertainty. Prognostics and Health Management Conference (PHM-Besan\c con) [Internet]. 2020. Publisher's VersionAbstract
This paper investigates the use of the Particle Swarm Optimization (PSO) algorithm to quantify the effect of RUL uncertainty on predictive maintenance planning. The prediction of RUL is influenced by many sources of uncertainty, and it is required to quantify their combined impact by incorporating the RUL uncertainty in the optimization process to minimize the total maintenance cost. In this work, predictive maintenance of a multi-functional single machine problem is adopted to study the impact of RUL uncertainty on maintenance planning. Therefore, the PSO algorithm is integrated with a random sampling-based strategy to select a sequence that performs better for different values of RUL associated with different jobs. Through a numerical example, results show the importance of optimizing maintenance actions under the consideration of RUL randomness.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. Lecture Notes in Information Systems and Organisation. 2020.
Rezki D, Mouss LH, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. ICT for an Inclusive World [Internet]. 2020. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. In: ICT for an Inclusive World. Springer ; 2020. pp. 537-549. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. Lecture Notes in Information Systems and Organisation. 2020.
Rezki D, Mouss LH, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. ICT for an Inclusive World [Internet]. 2020. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. In: ICT for an Inclusive World. Springer ; 2020. pp. 537-549. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss LH, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. ICT for an Inclusive World [Internet]. 2020. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. Lecture Notes in Information Systems and Organisation. 2020.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. In: ICT for an Inclusive World. Springer ; 2020. pp. 537-549. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. Lecture Notes in Information Systems and Organisation. 2020.
Rezki D, Mouss LH, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. ICT for an Inclusive World [Internet]. 2020. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Rezki D, Mouss L-H, Baaziz A, Rezki N. Rate of Penetration (ROP) Prediction in Oil Drilling Based on Ensemble Machine Learning. In: ICT for an Inclusive World. Springer ; 2020. pp. 537-549. Publisher's VersionAbstract
This work presents the prediction of the rate of progression in oil drilling based on random forest algorithm, which is part of the family of ensemble machine learning. The ROP parameter plays a very important role in oil drilling, which has a great impact on drilling costs, and its prediction allows drilling engineers to choose the best combination of input parameters for better progress in drilling operations. To resolve this problem, several works have been realized with the different modeling techniques as machine learning: RNAs, Bayesian networks, SVM etc. The random forest algorithm chosen for our model is better than the other MLS techniques. in speed or precision, following what we found in the literature and tests done with the open source machine learning tool on historical oil drilling logs from fields of Hassi Terfa located in southern Algeria.
Berghout T, Mouss L-H, KADRI O. Regularization Based Particle Swarm Optimization for Length Changeable Extreme Learning Machine under Health State Estimation of Military Aircraft Engines. 8thINTERNATIONAL CONFERENCEON DEFENSESYSTEMS: ARCHITECTURES AND TECHNOLOGIES (DAT’2020) April14-16, [Internet]. 2020. Publisher's VersionAbstract
In this work a new data-driven approach for Remaining Useful Life estimation of aircraft engines is developed. The proposed approach is a regularized Single Hidden Layer Feedforward Neural network (SLFN) with incremental constructive enhancements. The training rules of this algorithm are inspired form different Extreme Learning Machine (ELM) variants. Particle Swarm Optimization (PSO) algorithm is integrated to enhance tracking ability of the best regularization parameter to reduce the norm of the tuned weights. The proposed approach is evaluated using C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset and compared to its other derivatives and proved its accuracy. C-MAPSS software has revisions in military and civil applications. In this paper, the military version of its application is the used one.
Berghout T, Mouss L-H, KADRI O. Regularization Based Particle Swarm Optimization for Length Changeable Extreme Learning Machine under Health State Estimation of Military Aircraft Engines. 8thINTERNATIONAL CONFERENCEON DEFENSESYSTEMS: ARCHITECTURES AND TECHNOLOGIES (DAT’2020) April14-16, [Internet]. 2020. Publisher's VersionAbstract
In this work a new data-driven approach for Remaining Useful Life estimation of aircraft engines is developed. The proposed approach is a regularized Single Hidden Layer Feedforward Neural network (SLFN) with incremental constructive enhancements. The training rules of this algorithm are inspired form different Extreme Learning Machine (ELM) variants. Particle Swarm Optimization (PSO) algorithm is integrated to enhance tracking ability of the best regularization parameter to reduce the norm of the tuned weights. The proposed approach is evaluated using C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset and compared to its other derivatives and proved its accuracy. C-MAPSS software has revisions in military and civil applications. In this paper, the military version of its application is the used one.
Berghout T, Mouss L-H, KADRI O. Regularization Based Particle Swarm Optimization for Length Changeable Extreme Learning Machine under Health State Estimation of Military Aircraft Engines. 8thINTERNATIONAL CONFERENCEON DEFENSESYSTEMS: ARCHITECTURES AND TECHNOLOGIES (DAT’2020) April14-16, [Internet]. 2020. Publisher's VersionAbstract
In this work a new data-driven approach for Remaining Useful Life estimation of aircraft engines is developed. The proposed approach is a regularized Single Hidden Layer Feedforward Neural network (SLFN) with incremental constructive enhancements. The training rules of this algorithm are inspired form different Extreme Learning Machine (ELM) variants. Particle Swarm Optimization (PSO) algorithm is integrated to enhance tracking ability of the best regularization parameter to reduce the norm of the tuned weights. The proposed approach is evaluated using C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset and compared to its other derivatives and proved its accuracy. C-MAPSS software has revisions in military and civil applications. In this paper, the military version of its application is the used one.
Berghout T, Mouss L-H. Regularized Length Changeable Extreme Learning Machine with Incremental Learning Enhancements for Remaining Useful Life Prediction of Aircraft Engines. 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), 16-17 May [Internet]. 2020. Publisher's VersionAbstract
The main objective of this works is to study and improve the performances of the Single hidden Layer Feedforward Neural network (SLFN) for the application of Remaining Useful Life (RUL) prediction of aircraft engines. The most common problems in SLFNs based old training algorithms such as backpropagation are time consuming, over-fitting and the appropriate network architecture identification. In this paper a new incremental constructive learning algorithm based on Extreme Learning Machine algorithm is proposed for founding the appropriate architecture of a neural network under less computational costs. The aim of the proposed training approach is to study its maximum capabilities during RUL prediction by reducing over-fitting and human intervention. The performances of the proposed approach which are evaluated on C-MAPPS dataset and compared with its original variant from the literature. Experimental results proved that the new algorithm outperforms the old one in many metrics evaluations.
Berghout T, Mouss L-H. Regularized Length Changeable Extreme Learning Machine with Incremental Learning Enhancements for Remaining Useful Life Prediction of Aircraft Engines. 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), 16-17 May [Internet]. 2020. Publisher's VersionAbstract
The main objective of this works is to study and improve the performances of the Single hidden Layer Feedforward Neural network (SLFN) for the application of Remaining Useful Life (RUL) prediction of aircraft engines. The most common problems in SLFNs based old training algorithms such as backpropagation are time consuming, over-fitting and the appropriate network architecture identification. In this paper a new incremental constructive learning algorithm based on Extreme Learning Machine algorithm is proposed for founding the appropriate architecture of a neural network under less computational costs. The aim of the proposed training approach is to study its maximum capabilities during RUL prediction by reducing over-fitting and human intervention. The performances of the proposed approach which are evaluated on C-MAPPS dataset and compared with its original variant from the literature. Experimental results proved that the new algorithm outperforms the old one in many metrics evaluations.
Berghout T, Mouss L-H, KADRI O. Remaining Useful Life Prediction for aircraft engines with a new Denoising On-Line Sequential Extreme Learning Machine with Double Dynamic Forgetting Factors and Update Selection Strategy. 12th Conference on Mechanical Engineering March 17-18, 2020 Ecole Militaire Polytechnique Bordj El Bahri [Internet]. 2020. Publisher's Version
Berghout T, Mouss L-H, KADRI O. Remaining Useful Life Prediction for aircraft engines with a new Denoising On-Line Sequential Extreme Learning Machine with Double Dynamic Forgetting Factors and Update Selection Strategy. 12th Conference on Mechanical Engineering March 17-18, 2020 Ecole Militaire Polytechnique Bordj El Bahri [Internet]. 2020. Publisher's Version

Pages