2021
Hadjidj N , Benbrahim M, Ounnas D, Mouss L-H.
Analysis and Design of Modified Incremental Conductance-Based MPPT Algorithm for Photovoltaic System. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021.
Publisher's VersionAbstract
This study discusses the design of the Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) systems employing a modified incremental conductance (IncCond) algorithm to extract maximum power from a PV module. A PV module, a DC-DC converter, and a resistive load constitute the PV system. In the scientific literature, it is well-documented that typical MPPT algorithms have significant drawbacks, such as fluctuations around the MPP and poor tracking during a sudden change in atmospheric conditions. To solve the deficiencies of conventional methodology, a novel modified IncCond method is proposed in this study. The simulation results demonstrate that the updated IncCond algorithm presented allows for less oscillation around the maximum power point (MPP), a rapid dynamic response, and superior performance.
Hadjidj N , Benbrahim M, Ounnas D, Mouss L-H.
Analysis and Design of Modified Incremental Conductance-Based MPPT Algorithm for Photovoltaic System. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021.
Publisher's VersionAbstract
This study discusses the design of the Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) systems employing a modified incremental conductance (IncCond) algorithm to extract maximum power from a PV module. A PV module, a DC-DC converter, and a resistive load constitute the PV system. In the scientific literature, it is well-documented that typical MPPT algorithms have significant drawbacks, such as fluctuations around the MPP and poor tracking during a sudden change in atmospheric conditions. To solve the deficiencies of conventional methodology, a novel modified IncCond method is proposed in this study. The simulation results demonstrate that the updated IncCond algorithm presented allows for less oscillation around the maximum power point (MPP), a rapid dynamic response, and superior performance.
Hadjidj N , Benbrahim M, Ounnas D, Mouss L-H.
Analysis and Design of Modified Incremental Conductance-Based MPPT Algorithm for Photovoltaic System. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021.
Publisher's VersionAbstract
This study discusses the design of the Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) systems employing a modified incremental conductance (IncCond) algorithm to extract maximum power from a PV module. A PV module, a DC-DC converter, and a resistive load constitute the PV system. In the scientific literature, it is well-documented that typical MPPT algorithms have significant drawbacks, such as fluctuations around the MPP and poor tracking during a sudden change in atmospheric conditions. To solve the deficiencies of conventional methodology, a novel modified IncCond method is proposed in this study. The simulation results demonstrate that the updated IncCond algorithm presented allows for less oscillation around the maximum power point (MPP), a rapid dynamic response, and superior performance.
HADJIDJ N, Benbrahim M, Ounnes D, Mouss L-H.
Analysis and Design of Modified IncrementalConductance-BasedMPPT Algorithm for Photovoltaic System. The First International Conference on Renewable Energy Advanced Technologies and Applications (ICREATA’21 ), October 25-27 [Internet]. 2021.
Publisher's VersionAbstractNowadays, solar energy, which is the direct conversion of light into electricity, occupies a very important place among renewable energy resources due to its daily availability in most regions of the globe. Therefore, the wise exploitation of this clean energy will ultimately drive to cover all needed demands [1, 2]. This paper deals with the design of Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) system using a modified incremental conductance (IncCond) algorithm to extract maximum power from PV module. The considered PV system consists of a PV module, a DC-DC converter and a resistive load. In the literature, it is known that the conventional MPPT algorithms suffer from serious disadvantages such as fluctuations around the MPP and slow tracking during a rapid change in atmospheric conditions. Therefore, in this paper, and attempting to overcome the shortcomings of conventional approach. In this work, a new modified incremental conductance algorithm is proposed to find the Maximum Power Point Tracking (MPPT) of the Photovoltaic System. Simulation tests with different atmospheric conditions are provided to demonstrate the validity and the effectiveness of the proposed algorithm.
HADJIDJ N, Benbrahim M, Ounnes D, Mouss L-H.
Analysis and Design of Modified IncrementalConductance-BasedMPPT Algorithm for Photovoltaic System. The First International Conference on Renewable Energy Advanced Technologies and Applications (ICREATA’21 ), October 25-27 [Internet]. 2021.
Publisher's VersionAbstractNowadays, solar energy, which is the direct conversion of light into electricity, occupies a very important place among renewable energy resources due to its daily availability in most regions of the globe. Therefore, the wise exploitation of this clean energy will ultimately drive to cover all needed demands [1, 2]. This paper deals with the design of Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) system using a modified incremental conductance (IncCond) algorithm to extract maximum power from PV module. The considered PV system consists of a PV module, a DC-DC converter and a resistive load. In the literature, it is known that the conventional MPPT algorithms suffer from serious disadvantages such as fluctuations around the MPP and slow tracking during a rapid change in atmospheric conditions. Therefore, in this paper, and attempting to overcome the shortcomings of conventional approach. In this work, a new modified incremental conductance algorithm is proposed to find the Maximum Power Point Tracking (MPPT) of the Photovoltaic System. Simulation tests with different atmospheric conditions are provided to demonstrate the validity and the effectiveness of the proposed algorithm.
HADJIDJ N, Benbrahim M, Ounnes D, Mouss L-H.
Analysis and Design of Modified IncrementalConductance-BasedMPPT Algorithm for Photovoltaic System. The First International Conference on Renewable Energy Advanced Technologies and Applications (ICREATA’21 ), October 25-27 [Internet]. 2021.
Publisher's VersionAbstractNowadays, solar energy, which is the direct conversion of light into electricity, occupies a very important place among renewable energy resources due to its daily availability in most regions of the globe. Therefore, the wise exploitation of this clean energy will ultimately drive to cover all needed demands [1, 2]. This paper deals with the design of Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) system using a modified incremental conductance (IncCond) algorithm to extract maximum power from PV module. The considered PV system consists of a PV module, a DC-DC converter and a resistive load. In the literature, it is known that the conventional MPPT algorithms suffer from serious disadvantages such as fluctuations around the MPP and slow tracking during a rapid change in atmospheric conditions. Therefore, in this paper, and attempting to overcome the shortcomings of conventional approach. In this work, a new modified incremental conductance algorithm is proposed to find the Maximum Power Point Tracking (MPPT) of the Photovoltaic System. Simulation tests with different atmospheric conditions are provided to demonstrate the validity and the effectiveness of the proposed algorithm.
HADJIDJ N, Benbrahim M, Ounnes D, Mouss L-H.
Analysis and Design of Modified IncrementalConductance-BasedMPPT Algorithm for Photovoltaic System. The First International Conference on Renewable Energy Advanced Technologies and Applications (ICREATA’21 ), October 25-27 [Internet]. 2021.
Publisher's VersionAbstractNowadays, solar energy, which is the direct conversion of light into electricity, occupies a very important place among renewable energy resources due to its daily availability in most regions of the globe. Therefore, the wise exploitation of this clean energy will ultimately drive to cover all needed demands [1, 2]. This paper deals with the design of Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) system using a modified incremental conductance (IncCond) algorithm to extract maximum power from PV module. The considered PV system consists of a PV module, a DC-DC converter and a resistive load. In the literature, it is known that the conventional MPPT algorithms suffer from serious disadvantages such as fluctuations around the MPP and slow tracking during a rapid change in atmospheric conditions. Therefore, in this paper, and attempting to overcome the shortcomings of conventional approach. In this work, a new modified incremental conductance algorithm is proposed to find the Maximum Power Point Tracking (MPPT) of the Photovoltaic System. Simulation tests with different atmospheric conditions are provided to demonstrate the validity and the effectiveness of the proposed algorithm.
Zermane H, Mouss L-H, Benaicha S.
Automation and fuzzy control of a manufacturing system. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021.
Publisher's VersionAbstractThe automation of manufacturing systems is a major obligation to the developments because of exponential industrial equipment, and programming tools, so that growth needs and customer requirements. This automation is achieved in our work through the application programming tools from Siemens, which are PCS 7 (Process Control System) for industrial process control and FuzzyControl++ for fuzzy control. An industrial application is designed, developed and implemented in the cement factory in Ain-Touta (S.CIM.AT) located in the province of Batna, East of Algeria. Especially in the cement mill which gives the final product that is the cement.
Zermane H, Mouss L-H, Benaicha S.
Automation and fuzzy control of a manufacturing system. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021.
Publisher's VersionAbstractThe automation of manufacturing systems is a major obligation to the developments because of exponential industrial equipment, and programming tools, so that growth needs and customer requirements. This automation is achieved in our work through the application programming tools from Siemens, which are PCS 7 (Process Control System) for industrial process control and FuzzyControl++ for fuzzy control. An industrial application is designed, developed and implemented in the cement factory in Ain-Touta (S.CIM.AT) located in the province of Batna, East of Algeria. Especially in the cement mill which gives the final product that is the cement.
Zermane H, Mouss L-H, Benaicha S.
Automation and fuzzy control of a manufacturing system. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021.
Publisher's VersionAbstractThe automation of manufacturing systems is a major obligation to the developments because of exponential industrial equipment, and programming tools, so that growth needs and customer requirements. This automation is achieved in our work through the application programming tools from Siemens, which are PCS 7 (Process Control System) for industrial process control and FuzzyControl++ for fuzzy control. An industrial application is designed, developed and implemented in the cement factory in Ain-Touta (S.CIM.AT) located in the province of Batna, East of Algeria. Especially in the cement mill which gives the final product that is the cement.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H.
Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9.
Publisher's VersionAbstractNowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H.
Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9.
Publisher's VersionAbstractNowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H.
Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9.
Publisher's VersionAbstractNowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H.
Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9.
Publisher's VersionAbstractNowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H.
Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9.
Publisher's VersionAbstractNowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Haoues M, Dahane M, Mouss N-K.
Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409.
Publisher's VersionAbstractThis paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
Haoues M, Dahane M, Mouss N-K.
Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409.
Publisher's VersionAbstractThis paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
Haoues M, Dahane M, Mouss N-K.
Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409.
Publisher's VersionAbstractThis paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
AKSA K.
CAPTEURS INTELLIGENTS. Bookelis.; 2021.
AbstractL’évolution récente des moyens de la communication sans fil a permet la manipulation de l’information à travers des unités de calculs portables, appelés capteurs. Ces derniers, qui ont des caractéristiques particulières, sont capables de récolter, de traiter et de transmettre des données environnementales d’une manière autonome.Dans ce livre sont introduites les connaissances de base nécessaires à la bonne compréhension des capteurs intelligents, des réseaux de capteurs et les différents types protocoles de routage spécifiques aux réseaux de capteurs. Nous fournirons ainsi les définitions généralement acceptées par ce type de réseau. Nous aborderons également par une description succincte les principales caractéristiques, contraintes et facteurs conceptuels qui surviennent dans ces réseaux. Nous présenterons ensuite les différentes orientations prises aux applications des réseaux de capteurs.
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N.
A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145.
Publisher's VersionAbstractA recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs