Publications

2021
Rahem A, Yahiaoui D, Lahbari N, Bouzid T. Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract
The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.
Rahem A, Yahiaoui D, Lahbari N, Bouzid T. Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract
The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.
Rahem A, Yahiaoui D, Lahbari N, Bouzid T. Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract
The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.
Rahem A, Yahiaoui D, Lahbari N, Bouzid T. Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract
The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.
Mansouri T, Boufarh R, Saadi D. Effects of underground circular void on strip footing laid on the edge of a cohesionless slope under eccentric loads. Soils and Rocks [Internet]. 2021;44 (1). Publisher's VersionAbstract
Owing to the comeback of small-scale models, this paper presents results of an experimental study based on the effect of underground circular voids on strip footing placed on the edge of a cohesionless slope and subjected to eccentric loads. The bearing capacity-settlement relationship of footing on the slope and impact of diverse variables are expressed using dimensionless parameters such as the top vertical distance of the void from the base of footing, horizontal space linking the void-footing centre, and load eccentricity. The results verified that the stability of strip footing is influenced by the underground void, as well as the critical depth between the soil and top layer of the void. The critical horizontal distance between the void and the centre was also affected by the underground void. Furthermore, the results also verified that the influence of the void appeared insignificant when it was positioned at a depth or eccentricity equal to twice the width of footing.
Mansouri T, Boufarh R, Saadi D. Effects of underground circular void on strip footing laid on the edge of a cohesionless slope under eccentric loads. Soils and Rocks [Internet]. 2021;44 (1). Publisher's VersionAbstract
Owing to the comeback of small-scale models, this paper presents results of an experimental study based on the effect of underground circular voids on strip footing placed on the edge of a cohesionless slope and subjected to eccentric loads. The bearing capacity-settlement relationship of footing on the slope and impact of diverse variables are expressed using dimensionless parameters such as the top vertical distance of the void from the base of footing, horizontal space linking the void-footing centre, and load eccentricity. The results verified that the stability of strip footing is influenced by the underground void, as well as the critical depth between the soil and top layer of the void. The critical horizontal distance between the void and the centre was also affected by the underground void. Furthermore, the results also verified that the influence of the void appeared insignificant when it was positioned at a depth or eccentricity equal to twice the width of footing.
Mansouri T, Boufarh R, Saadi D. Effects of underground circular void on strip footing laid on the edge of a cohesionless slope under eccentric loads. Soils and Rocks [Internet]. 2021;44 (1). Publisher's VersionAbstract
Owing to the comeback of small-scale models, this paper presents results of an experimental study based on the effect of underground circular voids on strip footing placed on the edge of a cohesionless slope and subjected to eccentric loads. The bearing capacity-settlement relationship of footing on the slope and impact of diverse variables are expressed using dimensionless parameters such as the top vertical distance of the void from the base of footing, horizontal space linking the void-footing centre, and load eccentricity. The results verified that the stability of strip footing is influenced by the underground void, as well as the critical depth between the soil and top layer of the void. The critical horizontal distance between the void and the centre was also affected by the underground void. Furthermore, the results also verified that the influence of the void appeared insignificant when it was positioned at a depth or eccentricity equal to twice the width of footing.
Saadi D, Boufarh R, Mansouri T, Abbeche K. Etude de l'effet des cavités sur la capacité portante de deux fondations superficielles interférées reposant sur un sol granulaire. 1ère Edition des Journées Internationales en Géosciences et Environnement (JIGE2021) Agadir 26-27 Mars 2021. [Internet]. 2021. Publisher's Version
Saadi D, Boufarh R, Mansouri T, Abbeche K. Etude de l'effet des cavités sur la capacité portante de deux fondations superficielles interférées reposant sur un sol granulaire. 1ère Edition des Journées Internationales en Géosciences et Environnement (JIGE2021) Agadir 26-27 Mars 2021. [Internet]. 2021. Publisher's Version
Saadi D, Boufarh R, Mansouri T, Abbeche K. Etude de l'effet des cavités sur la capacité portante de deux fondations superficielles interférées reposant sur un sol granulaire. 1ère Edition des Journées Internationales en Géosciences et Environnement (JIGE2021) Agadir 26-27 Mars 2021. [Internet]. 2021. Publisher's Version
Saadi D, Boufarh R, Mansouri T, Abbeche K. Etude de l'effet des cavités sur la capacité portante de deux fondations superficielles interférées reposant sur un sol granulaire. 1ère Edition des Journées Internationales en Géosciences et Environnement (JIGE2021) Agadir 26-27 Mars 2021. [Internet]. 2021. Publisher's Version
Boufarh R, MANSOUR T, Boursas F. Etude numérique de la capacité portante d’une fondation renforcée par une colonne ballastée confinée par géogrille. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021) [Internet]. 2021. Publisher's Version
Boufarh R, MANSOUR T, Boursas F. Etude numérique de la capacité portante d’une fondation renforcée par une colonne ballastée confinée par géogrille. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021) [Internet]. 2021. Publisher's Version
Boufarh R, MANSOUR T, Boursas F. Etude numérique de la capacité portante d’une fondation renforcée par une colonne ballastée confinée par géogrille. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021) [Internet]. 2021. Publisher's Version
Amrane M, Messast S, Demagh R. Évaluation de la capacité portante des sols stratifiés à l'aide d'un logiciel d'analyse par éléments finis. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021),10-11 Novembre. 2021.
Amrane M, Messast S, Demagh R. Évaluation de la capacité portante des sols stratifiés à l'aide d'un logiciel d'analyse par éléments finis. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021),10-11 Novembre. 2021.
Amrane M, Messast S, Demagh R. Évaluation de la capacité portante des sols stratifiés à l'aide d'un logiciel d'analyse par éléments finis. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021),10-11 Novembre. 2021.
Mebarki M, Karech T, Derfouf F-E-M, Nabil A-B. Identification and characterization of the swelling of a soil in the Boumagueur region-Batna-. Second International Conference on Civil Engineering (ICCE 2021) [Internet]. 2021. Publisher's VersionAbstract

This work is divided into two parts. In the first part, we are mainly interested in the detailed description and the geological, hydrogeological, climatological and geotechnical characterization of the Boumagueur study region. The second part shows the results of an experimental study carried out in the laboratory to determine the swelling parameters of a swelling clayey soil from Boumagueur region. Subsequently, a study of the suction influence on volume behavior and on swelling parameters was carried out.

Mebarki M, Karech T, Derfouf F-E-M, Nabil A-B. Identification and characterization of the swelling of a soil in the Boumagueur region-Batna-. Second International Conference on Civil Engineering (ICCE 2021) [Internet]. 2021. Publisher's VersionAbstract

This work is divided into two parts. In the first part, we are mainly interested in the detailed description and the geological, hydrogeological, climatological and geotechnical characterization of the Boumagueur study region. The second part shows the results of an experimental study carried out in the laboratory to determine the swelling parameters of a swelling clayey soil from Boumagueur region. Subsequently, a study of the suction influence on volume behavior and on swelling parameters was carried out.

Mebarki M, Karech T, Derfouf F-E-M, Nabil A-B. Identification and characterization of the swelling of a soil in the Boumagueur region-Batna-. Second International Conference on Civil Engineering (ICCE 2021) [Internet]. 2021. Publisher's VersionAbstract

This work is divided into two parts. In the first part, we are mainly interested in the detailed description and the geological, hydrogeological, climatological and geotechnical characterization of the Boumagueur study region. The second part shows the results of an experimental study carried out in the laboratory to determine the swelling parameters of a swelling clayey soil from Boumagueur region. Subsequently, a study of the suction influence on volume behavior and on swelling parameters was carried out.

Pages