2021
Bensakhria M, Abdelhamid S.
Hybrid Heuristic Optimization of an Integrated Production Distribution System with Stock and Transportation Costs, in
International Conference on Computing Systems and Applications. Lecture Notes in Networks and Systems book series ; 2021.
Publisher's VersionAbstractIn this paper we address the integration of two-level supply chain with multiple items, production facility and retailers’ demand over a considered discrete time horizon. This two-level production distribution system features capacitated production facility supplying several retailers located in the same region. If production does take place, this process incurs a fixed setup cost as well as unit production costs. In addition, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles and routing costs are incurred. This work aims at implementing a solution to minimize the sum of the costs at the production facility and the retailers. The methodology adopted to tackle this issue is based on a hybrid heuristic, greedy and genetic algorithms that uses strong formulation to provide a good solution of a guaranteed quality that are as good or better than those provided by the MIP optimizer with a considerably larger run time. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.
Bensakhria M, Abdelhamid S.
Hybrid Heuristic Optimization of an Integrated Production Distribution System with Stock and Transportation Costs, in
International Conference on Computing Systems and Applications. Lecture Notes in Networks and Systems book series ; 2021.
Publisher's VersionAbstractIn this paper we address the integration of two-level supply chain with multiple items, production facility and retailers’ demand over a considered discrete time horizon. This two-level production distribution system features capacitated production facility supplying several retailers located in the same region. If production does take place, this process incurs a fixed setup cost as well as unit production costs. In addition, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles and routing costs are incurred. This work aims at implementing a solution to minimize the sum of the costs at the production facility and the retailers. The methodology adopted to tackle this issue is based on a hybrid heuristic, greedy and genetic algorithms that uses strong formulation to provide a good solution of a guaranteed quality that are as good or better than those provided by the MIP optimizer with a considerably larger run time. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.
Bensakhria M, Abdelhamid S.
A Hybrid Methodology based on heuristic algorithms for a production distribution system with routing decisions. . BizInfo (Blace) Journal of Economics, Management and Informatics [Internet]. 2021;12 (2) :1-22.
Publisher's VersionAbstractIn this paper, we address the integration of a two-level supply chain with multiple items. This two-level production-distribution system features a capacitated production facility supplying several retailers located in the same region. If production does occur, this process incurs a fixed setup cost and unit production costs. Besides, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles, routing costs incurred. This work aims to implement a minimization solution that reduces the total costs in both the production facility and retailers. The methodology adopted based on a hybrid heuristic, greedy and genetic algorithm uses strong formulation to provide a suitable solution of a guaranteed quality that is as good or better than those provided by the MIP optimizer. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.
Bensakhria M, Abdelhamid S.
A Hybrid Methodology based on heuristic algorithms for a production distribution system with routing decisions. . BizInfo (Blace) Journal of Economics, Management and Informatics [Internet]. 2021;12 (2) :1-22.
Publisher's VersionAbstractIn this paper, we address the integration of a two-level supply chain with multiple items. This two-level production-distribution system features a capacitated production facility supplying several retailers located in the same region. If production does occur, this process incurs a fixed setup cost and unit production costs. Besides, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles, routing costs incurred. This work aims to implement a minimization solution that reduces the total costs in both the production facility and retailers. The methodology adopted based on a hybrid heuristic, greedy and genetic algorithm uses strong formulation to provide a suitable solution of a guaranteed quality that is as good or better than those provided by the MIP optimizer. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.
Soltani M.
Implémentation et déploiement d’une nouvelle approche à base de Lean Six Sigma pour le développement et l’amélioration de la durabilité de la production des petites et moyennes entreprises. Génie industriel [Internet]. 2021.
Publisher's VersionAbstract
L’objectif de ce travail de thèse et de développer des nouvelles approches permettant aux petites et moyennes entreprises d’améliorer les performances de leur processus de fabrication. Nous avons développé trois approches aspirées du Lean Six Sigma (LSS) pour l’amélioration de la production dans un contexte conventionnel et classique d’une part et d’autre part dans un contexte de production durable. Dans la première approche nous avons proposé une approche Lean Six Sigma conventionnelle pour évaluer et suivre la compétitivité d’une PME en fonction des résultats obtenus par la méthode VSM. Dans la deuxième approche, nous avons proposé une nouvelle extension de l’approche LSS vers le contexte de la production durable en incorporant des algorithmes multicritères quantitatives. Cette approche nous a permis de surmonter quelques barrières au niveau du processus de l’application du LSS. Dans La troisième approche nous avons présenté une amélioration de l’approche LSS qui vise à montrer l’effet positif des algorithmes multicritères qualitatives flous pour surmonter certaines barrières du Lean Six Sigma liées aux phases d’analyse et d’amélioration de l’état actuel des processus de fabrication. Les approches proposées sont appliquées dans deux entreprise algériennes pour améliorer et contrôler la durabilité de leurs processus de fabrication.
Benayache A, Bilami A, Benaggoune K, Mouss L-H.
Industrial IoT middleware using a multi-agent system for consistency-based diagnostic in cement factory. International Journal of Autonomous and Adaptive Communications Systems [Internet]. 2021;14 (3).
Publisher's VersionAbstractWith the evolution of the internet of things (IoT), and due to its significant need in the industry, Industrial IoT (IIoT) becomes the suitable naming for this accompaniment. IIoT changed the view of the industry intelligently and over the internet. This overlapping of IoT and industry requires special treatment when systems deal with heterogeneous devices in a distributed environment and complex tasks. In this paper, we propose a middleware solution based on multi-agents system (MAS) to handle the distributed control of complex systems autonomously in an industrial environment. The proposed middleware enables machine-to-machine (M2M) communications among the system’s components. In this work, we also addressed the distributed diagnostic for real industrial system using MAS with a new suitable communication strategy to support the heterogeneity and interoperability issued in IIoT and assure real-time monitoring and control. Finally, we present a qualitative evaluation of our solution on real case study (cement factory).
Benayache A, Bilami A, Benaggoune K, Mouss L-H.
Industrial IoT middleware using a multi-agent system for consistency-based diagnostic in cement factory. International Journal of Autonomous and Adaptive Communications Systems [Internet]. 2021;14 (3).
Publisher's VersionAbstractWith the evolution of the internet of things (IoT), and due to its significant need in the industry, Industrial IoT (IIoT) becomes the suitable naming for this accompaniment. IIoT changed the view of the industry intelligently and over the internet. This overlapping of IoT and industry requires special treatment when systems deal with heterogeneous devices in a distributed environment and complex tasks. In this paper, we propose a middleware solution based on multi-agents system (MAS) to handle the distributed control of complex systems autonomously in an industrial environment. The proposed middleware enables machine-to-machine (M2M) communications among the system’s components. In this work, we also addressed the distributed diagnostic for real industrial system using MAS with a new suitable communication strategy to support the heterogeneity and interoperability issued in IIoT and assure real-time monitoring and control. Finally, we present a qualitative evaluation of our solution on real case study (cement factory).
Benayache A, Bilami A, Benaggoune K, Mouss L-H.
Industrial IoT middleware using a multi-agent system for consistency-based diagnostic in cement factory. International Journal of Autonomous and Adaptive Communications Systems [Internet]. 2021;14 (3).
Publisher's VersionAbstractWith the evolution of the internet of things (IoT), and due to its significant need in the industry, Industrial IoT (IIoT) becomes the suitable naming for this accompaniment. IIoT changed the view of the industry intelligently and over the internet. This overlapping of IoT and industry requires special treatment when systems deal with heterogeneous devices in a distributed environment and complex tasks. In this paper, we propose a middleware solution based on multi-agents system (MAS) to handle the distributed control of complex systems autonomously in an industrial environment. The proposed middleware enables machine-to-machine (M2M) communications among the system’s components. In this work, we also addressed the distributed diagnostic for real industrial system using MAS with a new suitable communication strategy to support the heterogeneity and interoperability issued in IIoT and assure real-time monitoring and control. Finally, we present a qualitative evaluation of our solution on real case study (cement factory).
Benayache A, Bilami A, Benaggoune K, Mouss L-H.
Industrial IoT middleware using a multi-agent system for consistency-based diagnostic in cement factory. International Journal of Autonomous and Adaptive Communications Systems [Internet]. 2021;14 (3).
Publisher's VersionAbstractWith the evolution of the internet of things (IoT), and due to its significant need in the industry, Industrial IoT (IIoT) becomes the suitable naming for this accompaniment. IIoT changed the view of the industry intelligently and over the internet. This overlapping of IoT and industry requires special treatment when systems deal with heterogeneous devices in a distributed environment and complex tasks. In this paper, we propose a middleware solution based on multi-agents system (MAS) to handle the distributed control of complex systems autonomously in an industrial environment. The proposed middleware enables machine-to-machine (M2M) communications among the system’s components. In this work, we also addressed the distributed diagnostic for real industrial system using MAS with a new suitable communication strategy to support the heterogeneity and interoperability issued in IIoT and assure real-time monitoring and control. Finally, we present a qualitative evaluation of our solution on real case study (cement factory).
Zerari N.
INTÉGRATION D’UN MODULE DE RECONNAISSANCE DE LA PAROLE AU NIVEAU D’UN SYSTÈME AUDIOVISUEL - APPLICATION TÉLÉVISEUR. [Internet]. 2021.
Publisher's VersionAbstractCette thèse propose de concevoir et réaliser un système de reconnaissance automatique de la parole destiné à commander à distance un système audiovisuel à savoir : un Téléviseur. Le système global "bout en bout" se scinde en deux blocs : le premier cherche à extraire les meilleures caractéristiques à partir du signal vocal d’entrée. A cet effet, plusieurs techniques d’extraction de caractéristiques vont être examinées et testées. Concernant le deuxième bloc, nous mettons en évidence une multitude de techniques relevant du domaine de l’apprentissage profond, dont l’impact est d’adapter et de d’affirmer les caractéristiques extraites pour donner en final la classe de l’énoncé. La validation des différentes méthodologies présentées dans cette thèse a été effectuée sur la base de deux jeux de données réelles, le premier est tenu compte pour une évaluation initiale, tandis que le second est con\c cu exclusivement pour le système ASR proposé dans cette thèse. Les résultats obtenus ont certifié l’efficience des approches proposées. Le défi pour les travaux futurs est d’évaluer ce type de système dans des conditions plus réalistes avec des signaux vocaux issus des milieux bruités.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18).
Publisher's VersionAbstractModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18).
Publisher's VersionAbstractModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18).
Publisher's VersionAbstractModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18).
Publisher's VersionAbstractModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18).
Publisher's VersionAbstractModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X.
Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18).
Publisher's VersionAbstractModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Berghout T, Benbouzid M, Mouss H-L.
Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8).
Publisher's VersionAbstract
Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.
Berghout T, Benbouzid M, Mouss H-L.
Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8).
Publisher's VersionAbstract
Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.
Berghout T, Benbouzid M, Mouss H-L.
Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8).
Publisher's VersionAbstract
Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.