2021
Ag Hameyni A, Aitouche S, AKSA K.
Proposition d’un tutoriel pour une usine apprenante (Textile de Batna). universitaires europeennes.; 2021.
AbstractLe contexte actuel de globalisation et de concurrence accrue a entrainé les firmes à reconsidérer leurs stratégies d’internationalisation et à réexaminer les opportunités offertes et les risques associés. Les alliances stratégiques apparaissent ainsi comme des vecteurs privilégiés notamment par les firmes multinationales pour leurs nouvelles implantations.La communication et le travail d’équipe sont parmi les compétences les plus récurrents associés à une connaissance des sciences de l’ingénieur. Cependant, leur application n’est pas simple, en raison de l’absence d’approche pédagogique contribuant à développer des connaissances fondées sur l’expérience.Dans ce travail nous avons défini qu’est-ce qu’une organisation apprenante, qu’est-ce qu’un tutoriel et pourquoi un tutoriel personnalisé dans un métier, ses différentes formes et les démarches pour l’élaboration d’un tutoriel.Après nous avons donné une présentation de l’entreprise qu’est Textile Batna. Nous avons con\c cu un tutoriel pour l’entreprise sous forme d’un site Web. Pour cela, le langage UML a été utilisé. Les fonctionnalités du tutoriel ont été présentées.
AKSA K.
Recherche Documentaire et Conception du Mémoire. 2021.
AbstractLe 4ème semestre d’un mastère de recherche est consacré à la réalisation d’un travail de recherche qui sera traduit par une conception et une rédaction d’un mémoire de fin d’études et finalement la préparation d’un exposé oral puis une soutenance.Le mémoire de fin d’études est une étape très importante dans la voie des études universitaires, car sans elle, l’étudiant ne peut pas acquérir la qualité de diplômé.Alors, dans ce petit livre vous pouvez trouver un petit guide sur: - La fa\c con d’organisation de votre mémoire. - La présentation de votre soutenance. - La rédaction d’un travail de recherche. - La préparation d’un poster.Le 4ème semestre d’un mastère de recherche est consacré à la réalisation d’un travail de recherche qui sera traduit par une conception et une rédaction d’un mémoire de fin d’études et finalement la préparation d’un exposé oral puis une soutenance.Le mémoire de fin d’études est une étape très importante dans la voie des études universitaires, car sans elle, l’étudiant ne peut pas acquérir la qualité de diplômé.Alors, dans ce petit livre vous pouvez trouver un petit guide sur: La fa\c con d’organisation de votre mémoire. La présentation de votre soutenance. La rédaction d’un travail de recherche. La préparation d’un poster.
Louchene H-E, Bouzgou H, Gueymard C.
Residual Networks with Long Short Term Memory for Hourly Solar Radiation Forecasting. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021.
Publisher's VersionAbstractThis paper describes a new approach for hourly global solar radiation forecasting based on a hybrid artificial neural network technique combining a residual neural network (RESNET) for powerful feature extraction of the most relevant moments of the past, and a long short-term memory (LSTM) technique for efficient projection into the future. Based on 11 years of solar irradiance measurements at Tamanrasset, Algeria, four evaluation metrics are used to demonstrate the efficiency of the proposed method: coefficient of determination (R²), root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These metrics are also used to evaluate the performance of the model in comparison with two existing forecasting models used as benchmark: a particular technique of convolutional neural network (CNN) called 1-dimensional convolutional neural network (1D-CNN) and a conventional LSTM. The present results indicate that the proposed RESNET-LSTM model outperforms the other models in terms of all statistical indicators.
Louchene H-E, Bouzgou H, Gueymard C.
Residual Networks with Long Short Term Memory for Hourly Solar Radiation Forecasting. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021.
Publisher's VersionAbstractThis paper describes a new approach for hourly global solar radiation forecasting based on a hybrid artificial neural network technique combining a residual neural network (RESNET) for powerful feature extraction of the most relevant moments of the past, and a long short-term memory (LSTM) technique for efficient projection into the future. Based on 11 years of solar irradiance measurements at Tamanrasset, Algeria, four evaluation metrics are used to demonstrate the efficiency of the proposed method: coefficient of determination (R²), root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These metrics are also used to evaluate the performance of the model in comparison with two existing forecasting models used as benchmark: a particular technique of convolutional neural network (CNN) called 1-dimensional convolutional neural network (1D-CNN) and a conventional LSTM. The present results indicate that the proposed RESNET-LSTM model outperforms the other models in terms of all statistical indicators.
Louchene H-E, Bouzgou H, Gueymard C.
Residual Networks with Long Short Term Memory for Hourly Solar Radiation Forecasting. International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES’21) [Internet]. 2021.
Publisher's VersionAbstractThis paper describes a new approach for hourly global solar radiation forecasting based on a hybrid artificial neural network technique combining a residual neural network (RESNET) for powerful feature extraction of the most relevant moments of the past, and a long short-term memory (LSTM) technique for efficient projection into the future. Based on 11 years of solar irradiance measurements at Tamanrasset, Algeria, four evaluation metrics are used to demonstrate the efficiency of the proposed method: coefficient of determination (R²), root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These metrics are also used to evaluate the performance of the model in comparison with two existing forecasting models used as benchmark: a particular technique of convolutional neural network (CNN) called 1-dimensional convolutional neural network (1D-CNN) and a conventional LSTM. The present results indicate that the proposed RESNET-LSTM model outperforms the other models in terms of all statistical indicators.
zemouri N, Bouzgou H, Gueymard CA.
Sample Entropy with One-Stage Variational Mode Decomposition for Hourly Solar Irradiance Forecasting. The First International Conference on Renewable Energy Advanced Technologies and Applications [Internet]. 2021.
Publisher's VersionAbstractSolar radiation forecasting is an important technology that is necessary to increase the performance, management, and control of modern electrical grids. It allows energy regulators to estimate the near-future output power of solar power plants, and can help to reduce the effects of power fluctuations on the electricity grid, thus increasing the overall efficiency and power quality of those plants [1]. However, the variable nature of solar irradiance poses a challenge in the exploitation of solar energy. In this context, forecasting techniques are now essential to ensure sustainable, reliable, and cost-effective solar energy production [2]. This paper proposes a hybrid machine learning model to forecast Global Horizontal Irradiance (GHI) in the short term (1-hour ahead). The experimental assessment of the model is done on the basis of an experimental dataset of 11 years of hourly GHI measurements from the BSRN Tamanrasset station in Algeria. The general framework of the proposed model is explained in Figure 1, and its main steps are summarized as follows:
zemouri N, Bouzgou H, Gueymard CA.
Sample Entropy with One-Stage Variational Mode Decomposition for Hourly Solar Irradiance Forecasting. The First International Conference on Renewable Energy Advanced Technologies and Applications [Internet]. 2021.
Publisher's VersionAbstractSolar radiation forecasting is an important technology that is necessary to increase the performance, management, and control of modern electrical grids. It allows energy regulators to estimate the near-future output power of solar power plants, and can help to reduce the effects of power fluctuations on the electricity grid, thus increasing the overall efficiency and power quality of those plants [1]. However, the variable nature of solar irradiance poses a challenge in the exploitation of solar energy. In this context, forecasting techniques are now essential to ensure sustainable, reliable, and cost-effective solar energy production [2]. This paper proposes a hybrid machine learning model to forecast Global Horizontal Irradiance (GHI) in the short term (1-hour ahead). The experimental assessment of the model is done on the basis of an experimental dataset of 11 years of hourly GHI measurements from the BSRN Tamanrasset station in Algeria. The general framework of the proposed model is explained in Figure 1, and its main steps are summarized as follows:
zemouri N, Bouzgou H, Gueymard CA.
Sample Entropy with One-Stage Variational Mode Decomposition for Hourly Solar Irradiance Forecasting. The First International Conference on Renewable Energy Advanced Technologies and Applications [Internet]. 2021.
Publisher's VersionAbstractSolar radiation forecasting is an important technology that is necessary to increase the performance, management, and control of modern electrical grids. It allows energy regulators to estimate the near-future output power of solar power plants, and can help to reduce the effects of power fluctuations on the electricity grid, thus increasing the overall efficiency and power quality of those plants [1]. However, the variable nature of solar irradiance poses a challenge in the exploitation of solar energy. In this context, forecasting techniques are now essential to ensure sustainable, reliable, and cost-effective solar energy production [2]. This paper proposes a hybrid machine learning model to forecast Global Horizontal Irradiance (GHI) in the short term (1-hour ahead). The experimental assessment of the model is done on the basis of an experimental dataset of 11 years of hourly GHI measurements from the BSRN Tamanrasset station in Algeria. The general framework of the proposed model is explained in Figure 1, and its main steps are summarized as follows:
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M.
A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement (2022) [Internet]. 2021;37 (2).
Publisher's VersionAbstractDeep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M.
A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement (2022) [Internet]. 2021;37 (2).
Publisher's VersionAbstractDeep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M.
A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement (2022) [Internet]. 2021;37 (2).
Publisher's VersionAbstractDeep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M.
A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement (2022) [Internet]. 2021;37 (2).
Publisher's VersionAbstractDeep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
Berghout T, Benbouzid M, Mouss L-H.
Sequence-To-Sequence Health Index Estimation of Rolling Bearings with Long-Short Term Memory and Transfer Learning. 47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021 [Internet]. 2021.
Publisher's VersionAbstractOne of the main data-driven challenges when assessing bearing health is that training and test samples must be drawn from the same probability distribution. Indeed, it is difficult and almost rare to witness such a phenomenon in practical applications due to the constantly changing working conditions of rotating machines. In addition, collecting sufficient deterioration samples from the bearing life cycle is not possible due to the huge memory requirements and processing costs. As a result, accelerated life tests are believed to be the primary alternatives to such a situation. However, and unfortunately, the recorded samples always are subject to lack of real patterns. Therefore, in this paper, a transfer learning approach is performed to solve such kind of problem where PRONOSTICO dataset is used to assess the current procedures.
Berghout T, Benbouzid M, Mouss L-H.
Sequence-To-Sequence Health Index Estimation of Rolling Bearings with Long-Short Term Memory and Transfer Learning. 47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021 [Internet]. 2021.
Publisher's VersionAbstractOne of the main data-driven challenges when assessing bearing health is that training and test samples must be drawn from the same probability distribution. Indeed, it is difficult and almost rare to witness such a phenomenon in practical applications due to the constantly changing working conditions of rotating machines. In addition, collecting sufficient deterioration samples from the bearing life cycle is not possible due to the huge memory requirements and processing costs. As a result, accelerated life tests are believed to be the primary alternatives to such a situation. However, and unfortunately, the recorded samples always are subject to lack of real patterns. Therefore, in this paper, a transfer learning approach is performed to solve such kind of problem where PRONOSTICO dataset is used to assess the current procedures.
Berghout T, Benbouzid M, Mouss L-H.
Sequence-To-Sequence Health Index Estimation of Rolling Bearings with Long-Short Term Memory and Transfer Learning. 47th Annual Conference of the IEEE Industrial Electronics Society, IECON 2021 [Internet]. 2021.
Publisher's VersionAbstractOne of the main data-driven challenges when assessing bearing health is that training and test samples must be drawn from the same probability distribution. Indeed, it is difficult and almost rare to witness such a phenomenon in practical applications due to the constantly changing working conditions of rotating machines. In addition, collecting sufficient deterioration samples from the bearing life cycle is not possible due to the huge memory requirements and processing costs. As a result, accelerated life tests are believed to be the primary alternatives to such a situation. However, and unfortunately, the recorded samples always are subject to lack of real patterns. Therefore, in this paper, a transfer learning approach is performed to solve such kind of problem where PRONOSTICO dataset is used to assess the current procedures.
Chouhal O, Mahdaoui R, Mouss L-H.
SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones. International Journal of Internet Manufacturing and Services [Internet]. 2021;8 (1).
Publisher's VersionAbstractComplex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.
Chouhal O, Mahdaoui R, Mouss L-H.
SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones. International Journal of Internet Manufacturing and Services [Internet]. 2021;8 (1).
Publisher's VersionAbstractComplex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.
Chouhal O, Mahdaoui R, Mouss L-H.
SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones. International Journal of Internet Manufacturing and Services [Internet]. 2021;8 (1).
Publisher's VersionAbstractComplex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.
Ghrieb A-O.
Supervision de Robot Manipulateur virtuel par Les réseaux de neurones et les réseaux de Petri. [Internet]. 2021.
Publisher's VersionAbstractDans ce travail de thèse, nous avons proposé un système de supervision appliqué sur un robot manipulateur à deux degrés de liberté. La supervision est utilisée pour assurer la reconfiguration en temps réel du robot. Dans ce système nous avons utilisé une nouvelle méthode de détection de défaut (FD) de frottement visqueux du robot supervisé combinée avec un module de commande tolérante aux défauts (FTC).Le premier module, basé sur une méthode de traitement appliquée sur des résidus, va permettre la détection de défaut pour bien estimer les corrections nécessaires du deuxième module. Une évaluation de l’effet de défaut durant la supervision a été faite. Par ailleurs, le protocole TCP pour le transfert des données entre le robot superviseur et le robot supervisé a été utilisé. Les résultats de simulation montrent que la méthode proposée corrige l’effet de défaut en utilisant les données qui arrivent d’un robot superviseur à distance. Ensuite, nous avons proposé une implémentation matérielle sur cible FPGA de l’algorithme de supervision dont le but est de valider notre contribution et d’assurer un traitement en temps réel dans le cas où il y a des robots réels. Par ailleurs, une étude comparative entre les performances des deux implémentations a été effectuée