Publications

2021
Lakehal H, Ghanai M, Chafaa K. BBO-Based State Optimization for PMSM Machines. Vietnam Journal of Computer ScienceVietnam Journal of Computer Science [Internet]. 2021;9 (1). Publisher's VersionAbstract

In this investigation, state vector estimation of the Permanent Magnet Synchronous machine (PMSM) using the nonlinear Kalman estimator (Extended Kalman Filter) is considered. The considered states are the speed of the rotor, its angular position, the torque of the load and the resistance of the stator. Since the extended Kalman filter contains some free parameters, it will be necessary to optimize them in order to obtain a better efficiency. The free parameters of EKF are the covariance matrices of state noise and measurement noise. These later will be auto adjusted by a new metaheuristic optimization technique called Biogeographical-based optimization (BBO). As far as we know, BBO–EKF optimization for PMSM state was not treated in the literature. The suggested estimation tuning approach is demonstrated using a computer simulation of a PMSM. Simulated experimentations show the robustness and effectiveness of the proposed scheme. In addition, a detailed comparative study with conventional methods like Particle Swarm Optimization and Genetic Algorithms will be given.

Lakehal H, Ghanai M, Chafaa K. BBO-Based State Optimization for PMSM Machines. Vietnam Journal of Computer ScienceVietnam Journal of Computer Science [Internet]. 2021;9 (1). Publisher's VersionAbstract

In this investigation, state vector estimation of the Permanent Magnet Synchronous machine (PMSM) using the nonlinear Kalman estimator (Extended Kalman Filter) is considered. The considered states are the speed of the rotor, its angular position, the torque of the load and the resistance of the stator. Since the extended Kalman filter contains some free parameters, it will be necessary to optimize them in order to obtain a better efficiency. The free parameters of EKF are the covariance matrices of state noise and measurement noise. These later will be auto adjusted by a new metaheuristic optimization technique called Biogeographical-based optimization (BBO). As far as we know, BBO–EKF optimization for PMSM state was not treated in the literature. The suggested estimation tuning approach is demonstrated using a computer simulation of a PMSM. Simulated experimentations show the robustness and effectiveness of the proposed scheme. In addition, a detailed comparative study with conventional methods like Particle Swarm Optimization and Genetic Algorithms will be given.

Benmoussa S, Benmebarek S, Benmebarek N. Bearing Capacity Factor of Circular Footings on Two-layered Clay Soils. Civil Engineering Journal [Internet]. 2021;7 (5) :775-785. Publisher's VersionAbstract

Geotechnical engineers often deal with layered foundation soils. In this case, the soil bearing capacity assessment using the conventional bearing capacity theory based on the upper layer properties introduces significant inaccuracies if the top layer thickness is comparable to the rigid footing width placed on the soil surface. Under undrained conditions the cohesion increases almost linearly with depth. A few theoretical studies have been proposed in the literature in order to incorporate the cohesion variation with depth in the computation of the ultimate bearing capacity of the strip and circular footings. Rigorous solutions to the problem of circular footings resting on layered clays with linear increase of cohesion do not appear to exist. In this paper, numerical computations using FLAC code are carried out to assess the vertical bearing capacity beneath rough rigid circular footing resting on two-layered clays of both homogeneous and linearly increasing shear strength profiles. The bearing capacity calculation results which depend on the top layer thickness, the two-layered clays strength ratio and the cohesion increase rates with depth are presented in both tables and graphs, and compared with previously published results available in the literature. The critical depth for circular footing is found significantly less than for strip footing.

Benmoussa S, Benmebarek S, Benmebarek N. Bearing Capacity Factor of Circular Footings on Two-layered Clay Soils. Civil Engineering Journal [Internet]. 2021;7 (5) :775-785. Publisher's VersionAbstract

Geotechnical engineers often deal with layered foundation soils. In this case, the soil bearing capacity assessment using the conventional bearing capacity theory based on the upper layer properties introduces significant inaccuracies if the top layer thickness is comparable to the rigid footing width placed on the soil surface. Under undrained conditions the cohesion increases almost linearly with depth. A few theoretical studies have been proposed in the literature in order to incorporate the cohesion variation with depth in the computation of the ultimate bearing capacity of the strip and circular footings. Rigorous solutions to the problem of circular footings resting on layered clays with linear increase of cohesion do not appear to exist. In this paper, numerical computations using FLAC code are carried out to assess the vertical bearing capacity beneath rough rigid circular footing resting on two-layered clays of both homogeneous and linearly increasing shear strength profiles. The bearing capacity calculation results which depend on the top layer thickness, the two-layered clays strength ratio and the cohesion increase rates with depth are presented in both tables and graphs, and compared with previously published results available in the literature. The critical depth for circular footing is found significantly less than for strip footing.

Benmoussa S, Benmebarek S, Benmebarek N. Bearing Capacity Factor of Circular Footings on Two-layered Clay Soils. Civil Engineering Journal [Internet]. 2021;7 (5) :775-785. Publisher's VersionAbstract

Geotechnical engineers often deal with layered foundation soils. In this case, the soil bearing capacity assessment using the conventional bearing capacity theory based on the upper layer properties introduces significant inaccuracies if the top layer thickness is comparable to the rigid footing width placed on the soil surface. Under undrained conditions the cohesion increases almost linearly with depth. A few theoretical studies have been proposed in the literature in order to incorporate the cohesion variation with depth in the computation of the ultimate bearing capacity of the strip and circular footings. Rigorous solutions to the problem of circular footings resting on layered clays with linear increase of cohesion do not appear to exist. In this paper, numerical computations using FLAC code are carried out to assess the vertical bearing capacity beneath rough rigid circular footing resting on two-layered clays of both homogeneous and linearly increasing shear strength profiles. The bearing capacity calculation results which depend on the top layer thickness, the two-layered clays strength ratio and the cohesion increase rates with depth are presented in both tables and graphs, and compared with previously published results available in the literature. The critical depth for circular footing is found significantly less than for strip footing.

Khennouf A, Baheddi M. Bearing capacity of a square shallow foundation on swelling soil using a numerical approach. World Journal of Engineering [Internet]. 2021. Publisher's VersionAbstract

Purpose

The estimation of bearing capacity for shallow foundations in swelling soil is an important and complex context. The complexity is due to the unsaturated swelling soil related to the drying and humidification environment. Hence, a serious study is needed to evaluate the effect of swelling potential soil on the foundation bearing capacity. The purpose of this paper is to analyze the bearing capacity of a rough square foundation founded on a homogeneous swelling soil mass, subjected to vertical loads.

Design/methodology/approach

A proposed numerical model based on the simulation of the swelling pressure in the initial state, followed by an elastoplastic behavior model may be used to calculate the foundation bearing capacity. The analyses were carried out using the finite-difference software (FLAC 3 D) with an elastic perfectly plastic Mohr–Coulomb constitutive model. Moreover, the numerical results obtained are compared with the analytical solutions proposed in the literature.

Findings

The numerical results were in good agreement with the analytical solutions proposed in the literature. Also, reasonable capacity and performance of the proposed numerical model.

Originality/value

The proposed numerical model is capable to predict the bearing capacity of the homogeneous swelling soil mass loaded by a shallow foundation. Also, it will be of great use for geotechnical engineers and researchers in the field.

Khennouf A, Baheddi M. Bearing capacity of a square shallow foundation on swelling soil using a numerical approach. World Journal of Engineering [Internet]. 2021. Publisher's VersionAbstract

Purpose

The estimation of bearing capacity for shallow foundations in swelling soil is an important and complex context. The complexity is due to the unsaturated swelling soil related to the drying and humidification environment. Hence, a serious study is needed to evaluate the effect of swelling potential soil on the foundation bearing capacity. The purpose of this paper is to analyze the bearing capacity of a rough square foundation founded on a homogeneous swelling soil mass, subjected to vertical loads.

Design/methodology/approach

A proposed numerical model based on the simulation of the swelling pressure in the initial state, followed by an elastoplastic behavior model may be used to calculate the foundation bearing capacity. The analyses were carried out using the finite-difference software (FLAC 3 D) with an elastic perfectly plastic Mohr–Coulomb constitutive model. Moreover, the numerical results obtained are compared with the analytical solutions proposed in the literature.

Findings

The numerical results were in good agreement with the analytical solutions proposed in the literature. Also, reasonable capacity and performance of the proposed numerical model.

Originality/value

The proposed numerical model is capable to predict the bearing capacity of the homogeneous swelling soil mass loaded by a shallow foundation. Also, it will be of great use for geotechnical engineers and researchers in the field.

Haoues M, Dahane M, Mouss K-N. Capacity planning with outsourcing opportunities under reliability and maintenance constraints. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

Haoues M, Dahane M, Mouss K-N. Capacity planning with outsourcing opportunities under reliability and maintenance constraints. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

Haoues M, Dahane M, Mouss K-N. Capacity planning with outsourcing opportunities under reliability and maintenance constraints. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

Cherak Z, Loucif L, Moussi A, Rolain J-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. Journal of Global Antimicrobial Resistance [Internet]. 2021;25 :287-309. Publisher's VersionAbstract

Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.

Cherak Z, Loucif L, Moussi A, Rolain J-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. Journal of Global Antimicrobial Resistance [Internet]. 2021;25 :287-309. Publisher's VersionAbstract

Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.

Cherak Z, Loucif L, Moussi A, Rolain J-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. Journal of Global Antimicrobial Resistance [Internet]. 2021;25 :287-309. Publisher's VersionAbstract

Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.

Cherak Z, Loucif L, Moussi A, Rolain J-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. Journal of Global Antimicrobial Resistance [Internet]. 2021;25 :287-309. Publisher's VersionAbstract

Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.

Chiremsel R, Fourar A, Massouh F, Chiremsel Z. CFD analysis of unsteady and anisotropic turbulent flow in a circular-sectioned 90° bend pipe with and without ribs: A comparative computational study. Journal of Mechanical Engineering and Sciences [Internet]. 2021;15 :7964-7982. Publisher's VersionAbstract

The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 40000. In order to validate the turbulence model, numerical simulations were compared with the existing experimental data. The results are found in good agreement with the literature data. After validation of the numerical strategy, the axial velocity distribution and the anisotropy of the Reynolds stresses at several downstream longitudinal locations were obtained in order to investigate the hydrodynamic developments of the analyzed flow. The results show that in the ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for both cases that the distribution of the mean axial velocity depends faintly on the Dean number. Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend pipe with ribs.

Chiremsel R, Fourar A, Massouh F, Chiremsel Z. CFD analysis of unsteady and anisotropic turbulent flow in a circular-sectioned 90° bend pipe with and without ribs: A comparative computational study. Journal of Mechanical Engineering and Sciences [Internet]. 2021;15 :7964-7982. Publisher's VersionAbstract

The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 40000. In order to validate the turbulence model, numerical simulations were compared with the existing experimental data. The results are found in good agreement with the literature data. After validation of the numerical strategy, the axial velocity distribution and the anisotropy of the Reynolds stresses at several downstream longitudinal locations were obtained in order to investigate the hydrodynamic developments of the analyzed flow. The results show that in the ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for both cases that the distribution of the mean axial velocity depends faintly on the Dean number. Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend pipe with ribs.

Chiremsel R, Fourar A, Massouh F, Chiremsel Z. CFD analysis of unsteady and anisotropic turbulent flow in a circular-sectioned 90° bend pipe with and without ribs: A comparative computational study. Journal of Mechanical Engineering and Sciences [Internet]. 2021;15 :7964-7982. Publisher's VersionAbstract

The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 40000. In order to validate the turbulence model, numerical simulations were compared with the existing experimental data. The results are found in good agreement with the literature data. After validation of the numerical strategy, the axial velocity distribution and the anisotropy of the Reynolds stresses at several downstream longitudinal locations were obtained in order to investigate the hydrodynamic developments of the analyzed flow. The results show that in the ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for both cases that the distribution of the mean axial velocity depends faintly on the Dean number. Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend pipe with ribs.

Chiremsel R, Fourar A, Massouh F, Chiremsel Z. CFD analysis of unsteady and anisotropic turbulent flow in a circular-sectioned 90° bend pipe with and without ribs: A comparative computational study. Journal of Mechanical Engineering and Sciences [Internet]. 2021;15 :7964-7982. Publisher's VersionAbstract

The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 40000. In order to validate the turbulence model, numerical simulations were compared with the existing experimental data. The results are found in good agreement with the literature data. After validation of the numerical strategy, the axial velocity distribution and the anisotropy of the Reynolds stresses at several downstream longitudinal locations were obtained in order to investigate the hydrodynamic developments of the analyzed flow. The results show that in the ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for both cases that the distribution of the mean axial velocity depends faintly on the Dean number. Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend pipe with ribs.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Characteristics of HTS inverted circular patches on anisotropic substrates. Journal of Computational Electronics [Internet]. 2021;20 :892-899. Publisher's VersionAbstract

In this study, an efficient full-wave method is developed for characterizing the resonant frequencies, bandwidths, and quality factors of an inverted circular superconducting patch antenna. Our technique is based on the Galerkin procedure in the Hankel transform domain (HTD) combined with the complex resistive boundary conditions. With the use of suitable Green’s functions in the HTD, the analysis is performed for the case where the superconducting circular patches is printed on an anisotropic substrate. The numerical results obtained using this approach are compared with the experimental results. These comparisons were very good, which proves the correctness and the validity of the method. It is found that the optical properties combined with optimally-chosen structural parameters of anisotropic materials can maintain control of the resonant frequency and exhibit wider bandwidth characteristics.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Characteristics of HTS inverted circular patches on anisotropic substrates. Journal of Computational Electronics [Internet]. 2021;20 :892-899. Publisher's VersionAbstract

In this study, an efficient full-wave method is developed for characterizing the resonant frequencies, bandwidths, and quality factors of an inverted circular superconducting patch antenna. Our technique is based on the Galerkin procedure in the Hankel transform domain (HTD) combined with the complex resistive boundary conditions. With the use of suitable Green’s functions in the HTD, the analysis is performed for the case where the superconducting circular patches is printed on an anisotropic substrate. The numerical results obtained using this approach are compared with the experimental results. These comparisons were very good, which proves the correctness and the validity of the method. It is found that the optical properties combined with optimally-chosen structural parameters of anisotropic materials can maintain control of the resonant frequency and exhibit wider bandwidth characteristics.

Pages