Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Ghallache L, Mohamed-Cherif A, China B, Mebkhout F, Boilattabi N, Bouchemal A, Rebia A, Ayachi A, Khelef D, Miroud K.
Antibiotic Resistance Profile of Escherichia coli Isolated from Bovine Subclinical Mastitis of Dairy Farms in Algeria from 2017 to 2019. World’s Veterinary Journal [Internet]. 2021;11 (3) :402-415.
Publisher's VersionAbstract
Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extendedspectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Cheriet T, HANFER M, Mancini I, Benelhadj S, Laouas NE, Ameddah S, Menad A, Seghiri R.
Anti-inflammatory and hemostatic effects of Linaria reflexa Desf. Natural Product Research [Internet]. 2021;35 (16) :2778-2783.
Publisher's VersionAbstract
The work presented here was aimed to investigate the in vivo anti-inflammatory and in vitro hemostatic activities of Linaria reflexa extract and to establish the relationship between its bioactivity and chemical composition. Twenty-three secondary metabolites were identified, most of them are good anti-inflammatory agents, in line with data by carrageenin-induced rat paw edema assays of the n-butanol extract showing high anti-inflammatory inhibition (63.90%) of edema swelling in the rat paw at the dose 200 mg/kg after 4 h. Furthermore, both extent of inflammatory response and tissue injury were prevented keeping the levels of rate myeloperoxidase (60.16%) and of malondialdehyde, which is the final product of lipid peroxidation generated by free radicals (58.58%). The same extract showed also a remarkable hemostatic effect established by measuring the coagulation time of decalcified plasma (45 s), related to its flavonoid glycosides content.
Ghedadba N, Hambaba L, Hachemi M, Bensaad MS.
Antioxidant and Anti-inflammatory Activities of Methanolic Extract of Marrubium deserti de Noé Leaves. PSM Biol. Res.PSM Biol. Res. [Internet]. 2021;6 (3) :56-65.
Publisher's VersionAbstract
The objective of the present study was to determine the pharmacological properties of the methanolic (MeOH) extract of Marrubium deserti leaves. For this purpose, antioxidant activity was carried out by DPPH and Ferric reducing power (FRAP) assays respectivelywhile In vivoanti-inflammatory activity was tested by carrageenan-induced paw edema model. The Phytochemical investigation revealed the presence of several biocompounds, and total phenolic and flavonoidcontents were also determined to support our results and revealed a high proportions of polyphenols (184 ± 0.78 mg GAE/g extract) and flavonoids (28.48 ± 0.40 mg QE/g extract). The MeOH extract demonstrated great pharmacological properties with a dose-effect relationship. Thus, a great antioxidant effect was recorded in both DPPH and FRAP assayswith a respective IC50 of (15.1 μg/ml) and (80.01 ± 1 μg EAA/g of extract) and were considered significant (P<0.05) when compared to respective standards. On the other hand, anti-inflammatory results suggested that the plant extract could effectively oppose the inflammation caused by carrageenan at the dose of 200 mg/kg with significant decrease (84.1 %) of inflammation. These encouraging results suggest that our plant could be a good candidate to treat more effectively pathologies related to oxidative stress and inflammation.
Ghedadba N, Hambaba L, Hachemi M, Bensaad MS.
Antioxidant and Anti-inflammatory Activities of Methanolic Extract of Marrubium deserti de Noé Leaves. PSM Biol. Res.PSM Biol. Res. [Internet]. 2021;6 (3) :56-65.
Publisher's VersionAbstract
The objective of the present study was to determine the pharmacological properties of the methanolic (MeOH) extract of Marrubium deserti leaves. For this purpose, antioxidant activity was carried out by DPPH and Ferric reducing power (FRAP) assays respectivelywhile In vivoanti-inflammatory activity was tested by carrageenan-induced paw edema model. The Phytochemical investigation revealed the presence of several biocompounds, and total phenolic and flavonoidcontents were also determined to support our results and revealed a high proportions of polyphenols (184 ± 0.78 mg GAE/g extract) and flavonoids (28.48 ± 0.40 mg QE/g extract). The MeOH extract demonstrated great pharmacological properties with a dose-effect relationship. Thus, a great antioxidant effect was recorded in both DPPH and FRAP assayswith a respective IC50 of (15.1 μg/ml) and (80.01 ± 1 μg EAA/g of extract) and were considered significant (P<0.05) when compared to respective standards. On the other hand, anti-inflammatory results suggested that the plant extract could effectively oppose the inflammation caused by carrageenan at the dose of 200 mg/kg with significant decrease (84.1 %) of inflammation. These encouraging results suggest that our plant could be a good candidate to treat more effectively pathologies related to oxidative stress and inflammation.
Ghedadba N, Hambaba L, Hachemi M, Bensaad MS.
Antioxidant and Anti-inflammatory Activities of Methanolic Extract of Marrubium deserti de Noé Leaves. PSM Biol. Res.PSM Biol. Res. [Internet]. 2021;6 (3) :56-65.
Publisher's VersionAbstract
The objective of the present study was to determine the pharmacological properties of the methanolic (MeOH) extract of Marrubium deserti leaves. For this purpose, antioxidant activity was carried out by DPPH and Ferric reducing power (FRAP) assays respectivelywhile In vivoanti-inflammatory activity was tested by carrageenan-induced paw edema model. The Phytochemical investigation revealed the presence of several biocompounds, and total phenolic and flavonoidcontents were also determined to support our results and revealed a high proportions of polyphenols (184 ± 0.78 mg GAE/g extract) and flavonoids (28.48 ± 0.40 mg QE/g extract). The MeOH extract demonstrated great pharmacological properties with a dose-effect relationship. Thus, a great antioxidant effect was recorded in both DPPH and FRAP assayswith a respective IC50 of (15.1 μg/ml) and (80.01 ± 1 μg EAA/g of extract) and were considered significant (P<0.05) when compared to respective standards. On the other hand, anti-inflammatory results suggested that the plant extract could effectively oppose the inflammation caused by carrageenan at the dose of 200 mg/kg with significant decrease (84.1 %) of inflammation. These encouraging results suggest that our plant could be a good candidate to treat more effectively pathologies related to oxidative stress and inflammation.