Publications

2021
Noui S, Bougoul S, Demagh Y. Interaction Between the Turbulent Natural Convection and Surface Radiation Inside a Confined Greenhouse. International Journal of Heat and Technology [Internet]. 2021;39 (1) :51-60. Publisher's VersionAbstract

Closed greenhouse systems optimize internal climatic conditions for both reducing energy loss and high-quality yields. Nevertheless, careful monitoring of the parameters of the microclimate requires a better understanding of the thermal phenomena that coexist at the same time inside the greenhouses. In the present study, the surface radiation effect on the natural convection in the greenhouse was investigated numerically based a turbulent unsteady model. The k-ε model was adopted for the turbulent flow and the discrete ordinate (DO) method for the radiation heat transfer. Assuming a no isotherm conditions at the floor and roof faces of the greenhouse and for a Rayleigh number ranges from 0.6×1010 to 2.3×1010. The results showed a strong radiation effect on the thermal behavior near the walls and considerably reduces the flow dynamics within the greenhouse. The contribution of the radiation heat transfer on the total Nusselt number at least 50% greater than that without. The results obtained for the selected values of Rayleigh numbers are in good agreement with the experimental data of the literature.

Noui S, Bougoul S, Demagh Y. Interaction Between the Turbulent Natural Convection and Surface Radiation Inside a Confined Greenhouse. International Journal of Heat and Technology [Internet]. 2021;39 (1) :51-60. Publisher's VersionAbstract

Closed greenhouse systems optimize internal climatic conditions for both reducing energy loss and high-quality yields. Nevertheless, careful monitoring of the parameters of the microclimate requires a better understanding of the thermal phenomena that coexist at the same time inside the greenhouses. In the present study, the surface radiation effect on the natural convection in the greenhouse was investigated numerically based a turbulent unsteady model. The k-ε model was adopted for the turbulent flow and the discrete ordinate (DO) method for the radiation heat transfer. Assuming a no isotherm conditions at the floor and roof faces of the greenhouse and for a Rayleigh number ranges from 0.6×1010 to 2.3×1010. The results showed a strong radiation effect on the thermal behavior near the walls and considerably reduces the flow dynamics within the greenhouse. The contribution of the radiation heat transfer on the total Nusselt number at least 50% greater than that without. The results obtained for the selected values of Rayleigh numbers are in good agreement with the experimental data of the literature.

Noui S, Bougoul S, Demagh Y. Interaction Between the Turbulent Natural Convection and Surface Radiation Inside a Confined Greenhouse. International Journal of Heat and Technology [Internet]. 2021;39 (1) :51-60. Publisher's VersionAbstract

Closed greenhouse systems optimize internal climatic conditions for both reducing energy loss and high-quality yields. Nevertheless, careful monitoring of the parameters of the microclimate requires a better understanding of the thermal phenomena that coexist at the same time inside the greenhouses. In the present study, the surface radiation effect on the natural convection in the greenhouse was investigated numerically based a turbulent unsteady model. The k-ε model was adopted for the turbulent flow and the discrete ordinate (DO) method for the radiation heat transfer. Assuming a no isotherm conditions at the floor and roof faces of the greenhouse and for a Rayleigh number ranges from 0.6×1010 to 2.3×1010. The results showed a strong radiation effect on the thermal behavior near the walls and considerably reduces the flow dynamics within the greenhouse. The contribution of the radiation heat transfer on the total Nusselt number at least 50% greater than that without. The results obtained for the selected values of Rayleigh numbers are in good agreement with the experimental data of the literature.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Inverted HTS rectangular patch antennas: Theoretical investigation. Physica C: Superconductivity and its Applications [Internet]. 2021;580. Publisher's VersionAbstract

In this paper, we propose a full-wave analysis for characterizing the resonant frequencies and bandwidths of high-temperature superconductor inverted microstrip printed on anisotropic substrates. Our proposed approach is based on Galerkin procedure in the Fourier transform domain (FTD) combining with the complex resistive boundary condition. With the use of suitable Green's functions in the FTD, the analysis is performed for the case where the superconducting rectangular patches printed on anisotropic substrate. The numerical results obtained using the proposed approach are compared with previously published numerical results computed by means of the electromagnetic simulator “IE3D software”. These comparisons were very good, which prove the correctness and the validity of the proposed method. It is found that the optical properties combined with optimally chosen structural parameters of anisotropic materials can be maintaining control of the resonant frequency and exhibiting wider bandwidth characteristics.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Inverted HTS rectangular patch antennas: Theoretical investigation. Physica C: Superconductivity and its Applications [Internet]. 2021;580. Publisher's VersionAbstract

In this paper, we propose a full-wave analysis for characterizing the resonant frequencies and bandwidths of high-temperature superconductor inverted microstrip printed on anisotropic substrates. Our proposed approach is based on Galerkin procedure in the Fourier transform domain (FTD) combining with the complex resistive boundary condition. With the use of suitable Green's functions in the FTD, the analysis is performed for the case where the superconducting rectangular patches printed on anisotropic substrate. The numerical results obtained using the proposed approach are compared with previously published numerical results computed by means of the electromagnetic simulator “IE3D software”. These comparisons were very good, which prove the correctness and the validity of the proposed method. It is found that the optical properties combined with optimally chosen structural parameters of anisotropic materials can be maintaining control of the resonant frequency and exhibiting wider bandwidth characteristics.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Inverted HTS rectangular patch antennas: Theoretical investigation. Physica C: Superconductivity and its Applications [Internet]. 2021;580. Publisher's VersionAbstract

In this paper, we propose a full-wave analysis for characterizing the resonant frequencies and bandwidths of high-temperature superconductor inverted microstrip printed on anisotropic substrates. Our proposed approach is based on Galerkin procedure in the Fourier transform domain (FTD) combining with the complex resistive boundary condition. With the use of suitable Green's functions in the FTD, the analysis is performed for the case where the superconducting rectangular patches printed on anisotropic substrate. The numerical results obtained using the proposed approach are compared with previously published numerical results computed by means of the electromagnetic simulator “IE3D software”. These comparisons were very good, which prove the correctness and the validity of the proposed method. It is found that the optical properties combined with optimally chosen structural parameters of anisotropic materials can be maintaining control of the resonant frequency and exhibiting wider bandwidth characteristics.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Inverted HTS rectangular patch antennas: Theoretical investigation. Physica C: Superconductivity and its Applications [Internet]. 2021;580. Publisher's VersionAbstract

In this paper, we propose a full-wave analysis for characterizing the resonant frequencies and bandwidths of high-temperature superconductor inverted microstrip printed on anisotropic substrates. Our proposed approach is based on Galerkin procedure in the Fourier transform domain (FTD) combining with the complex resistive boundary condition. With the use of suitable Green's functions in the FTD, the analysis is performed for the case where the superconducting rectangular patches printed on anisotropic substrate. The numerical results obtained using the proposed approach are compared with previously published numerical results computed by means of the electromagnetic simulator “IE3D software”. These comparisons were very good, which prove the correctness and the validity of the proposed method. It is found that the optical properties combined with optimally chosen structural parameters of anisotropic materials can be maintaining control of the resonant frequency and exhibiting wider bandwidth characteristics.

Zerguine M, Maafa Y. Inviscid limit for the viscous 2D Boussinesq system with temperature-dependent diffusivity. arXiv , Mathematics [Internet]. 2021. Publisher's VersionAbstract

We establish global-posedness in time for the viscous Boussinesq equations in two dimensions of space with temperature-dependent diffusivity in the framework of a smooth vortex patch. We also provide the inviscid limit for velocity, temperature, and associated flow toward the system studied very recently in \cite{Paicu-Zhu} as soon as the viscosity goes to zero, and quantify the rate of convergence.

Zerguine M, Maafa Y. Inviscid limit for the viscous 2D Boussinesq system with temperature-dependent diffusivity. arXiv , Mathematics [Internet]. 2021. Publisher's VersionAbstract

We establish global-posedness in time for the viscous Boussinesq equations in two dimensions of space with temperature-dependent diffusivity in the framework of a smooth vortex patch. We also provide the inviscid limit for velocity, temperature, and associated flow toward the system studied very recently in \cite{Paicu-Zhu} as soon as the viscosity goes to zero, and quantify the rate of convergence.

Abdı A, Bouamrane A, Karech T, Dahri N, Kaouachi A. Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering. 2021;39 :5675-5691.Abstract

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

Abdı A, Bouamrane A, Karech T, Dahri N, Kaouachi A. Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering. 2021;39 :5675-5691.Abstract

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

Abdı A, Bouamrane A, Karech T, Dahri N, Kaouachi A. Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering. 2021;39 :5675-5691.Abstract

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

Abdı A, Bouamrane A, Karech T, Dahri N, Kaouachi A. Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering. 2021;39 :5675-5691.Abstract

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

Abdı A, Bouamrane A, Karech T, Dahri N, Kaouachi A. Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria). Geotechnical and Geological Engineering. 2021;39 :5675-5691.Abstract

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

El-Bakkali A, Sadki S, Drissi LB, Djeffal F. Layers engineering optoelectronic properties of 2D hexagonal GeS materials. Physica E: Low-dimensional Systems and Nanostructures [Internet]. 2021;133 :114791. Publisher's VersionAbstract

Using first-principles calculations, we study the structural, electronic and optical properties of the monolayer, bilayer and trilayer germanium monosulfide GeS. The results reveal an indirect semiconducting band gap for the monolayer and trilayer GeS, whereas the gap is direct for the bilayer GeS. Both the generalized gradient approximation and the screened hybrid functionals assess a decrease in band energy as the number of layers is improved. Furthermore, due to the high buckling of lattice structures, the optical spectra show significant degree of anisotropy. The number of layers engineers key optical parameters including the refractive index, the reflectivity absorption and provides the layered GeS with excellent absorption in the low energy region, namely the visible and UV range of the electromagnetic spectrum. Accordingly, 2D hexagonal GeS few-layers can be used as a highly promising material in the optoelectronic, ultraviolet optical nanodevices and photovoltaics.

El-Bakkali A, Sadki S, Drissi LB, Djeffal F. Layers engineering optoelectronic properties of 2D hexagonal GeS materials. Physica E: Low-dimensional Systems and Nanostructures [Internet]. 2021;133 :114791. Publisher's VersionAbstract

Using first-principles calculations, we study the structural, electronic and optical properties of the monolayer, bilayer and trilayer germanium monosulfide GeS. The results reveal an indirect semiconducting band gap for the monolayer and trilayer GeS, whereas the gap is direct for the bilayer GeS. Both the generalized gradient approximation and the screened hybrid functionals assess a decrease in band energy as the number of layers is improved. Furthermore, due to the high buckling of lattice structures, the optical spectra show significant degree of anisotropy. The number of layers engineers key optical parameters including the refractive index, the reflectivity absorption and provides the layered GeS with excellent absorption in the low energy region, namely the visible and UV range of the electromagnetic spectrum. Accordingly, 2D hexagonal GeS few-layers can be used as a highly promising material in the optoelectronic, ultraviolet optical nanodevices and photovoltaics.

El-Bakkali A, Sadki S, Drissi LB, Djeffal F. Layers engineering optoelectronic properties of 2D hexagonal GeS materials. Physica E: Low-dimensional Systems and Nanostructures [Internet]. 2021;133 :114791. Publisher's VersionAbstract

Using first-principles calculations, we study the structural, electronic and optical properties of the monolayer, bilayer and trilayer germanium monosulfide GeS. The results reveal an indirect semiconducting band gap for the monolayer and trilayer GeS, whereas the gap is direct for the bilayer GeS. Both the generalized gradient approximation and the screened hybrid functionals assess a decrease in band energy as the number of layers is improved. Furthermore, due to the high buckling of lattice structures, the optical spectra show significant degree of anisotropy. The number of layers engineers key optical parameters including the refractive index, the reflectivity absorption and provides the layered GeS with excellent absorption in the low energy region, namely the visible and UV range of the electromagnetic spectrum. Accordingly, 2D hexagonal GeS few-layers can be used as a highly promising material in the optoelectronic, ultraviolet optical nanodevices and photovoltaics.

El-Bakkali A, Sadki S, Drissi LB, Djeffal F. Layers engineering optoelectronic properties of 2D hexagonal GeS materials. Physica E: Low-dimensional Systems and Nanostructures [Internet]. 2021;133 :114791. Publisher's VersionAbstract

Using first-principles calculations, we study the structural, electronic and optical properties of the monolayer, bilayer and trilayer germanium monosulfide GeS. The results reveal an indirect semiconducting band gap for the monolayer and trilayer GeS, whereas the gap is direct for the bilayer GeS. Both the generalized gradient approximation and the screened hybrid functionals assess a decrease in band energy as the number of layers is improved. Furthermore, due to the high buckling of lattice structures, the optical spectra show significant degree of anisotropy. The number of layers engineers key optical parameters including the refractive index, the reflectivity absorption and provides the layered GeS with excellent absorption in the low energy region, namely the visible and UV range of the electromagnetic spectrum. Accordingly, 2D hexagonal GeS few-layers can be used as a highly promising material in the optoelectronic, ultraviolet optical nanodevices and photovoltaics.

Berghout T, Benbouzid M, Mouss L-H. Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8) :2163. Publisher's VersionAbstract

Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.

Berghout T, Benbouzid M, Mouss L-H. Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8) :2163. Publisher's VersionAbstract

Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.

Pages