Publications

2023
Bouzaher H, Belkacem M-A. Le Débat Onusien Sur Les Droits De L’enfant : Une Confrontation Discursive Orientée Par «une Question Argumentative ». Revue algérienne des lettres [Internet]. 2023;6 (2) :141-153. Publisher's VersionAbstract

Le présent article met en jeu un objectif bien précis, celui de nous interroger sur le rôle des questions argumentatives et de cerner leurs relations avec l’évolution argumentative des thèmes mis en délibération onusienne. Le corpus d’analyse est un recueil de comptes rendus analytiques « textes officiels » qui ont été récoltés sur le site officiel des Nations Unies. Notre travail s’inscrit dans la conception de l’interaction argumentative telle qu’elle a été définie par Christian Plantin. Ce modèle s’accorde parfaitement avec une analyse du dialogue onusien. Dans ce travail nous visons à présenter le statut argumentatif et interactionnel de la question argumentative. This article brings in a very precise objective that allows us to interrogate the role of argumentative questions, and to identify their relations with the argumentative evolution of themes provided in the United Nations’ deliberation. The corpus of analysis is a collection of analytic reports “official texts”, which were collected from the UN’s official website. Our work falls under to the conception of argumentative interaction such as the one defined by Christian Plantin. This model corresponds perfectly with the UN’s dialogue analysis. In this work, we aim to present the argumentative and interactional statuses of argumentative questions.

Bouzaher H, Belkacem M-A. Le Débat Onusien Sur Les Droits De L’enfant : Une Confrontation Discursive Orientée Par «une Question Argumentative ». Revue algérienne des lettres [Internet]. 2023;6 (2) :141-153. Publisher's VersionAbstract

Le présent article met en jeu un objectif bien précis, celui de nous interroger sur le rôle des questions argumentatives et de cerner leurs relations avec l’évolution argumentative des thèmes mis en délibération onusienne. Le corpus d’analyse est un recueil de comptes rendus analytiques « textes officiels » qui ont été récoltés sur le site officiel des Nations Unies. Notre travail s’inscrit dans la conception de l’interaction argumentative telle qu’elle a été définie par Christian Plantin. Ce modèle s’accorde parfaitement avec une analyse du dialogue onusien. Dans ce travail nous visons à présenter le statut argumentatif et interactionnel de la question argumentative. This article brings in a very precise objective that allows us to interrogate the role of argumentative questions, and to identify their relations with the argumentative evolution of themes provided in the United Nations’ deliberation. The corpus of analysis is a collection of analytic reports “official texts”, which were collected from the UN’s official website. Our work falls under to the conception of argumentative interaction such as the one defined by Christian Plantin. This model corresponds perfectly with the UN’s dialogue analysis. In this work, we aim to present the argumentative and interactional statuses of argumentative questions.

Mehannaoui R, Mouss K-N, AKSA K. IoT-based food traceability system: Architecture, technologies, applications, and future trends. Food Control [Internet]. 2023;145. Publisher's VersionAbstract

An effective Food Traceability System (FTS) in a Food Supply Chain (FSC) should adequately provide all necessary information to the consumer(s), meet the requirements of the relevant agencies, and improve food safety as well as consumer confidence. New information and communication technologies are rapidly advancing, especially after the emergence of the Internet of Things (IoT). Consequently, new food traceability systems have become mainly based on IoT. Many studies have been conducted on food traceability. They mainly focused on the practical implementation and theoretical concepts. Accordingly, various definitions, technologies, and principles have been proposed. The “traceability” concept has been defined in several ways and each new definition has tried to generalize its previous ones. Nevertheless, no standard definition has been reached. Furthermore, the architecture of IoT-based food traceability systems has not yet been standardized. Similarly, used technologies in this field have not been yet well classified. This article presents an analysis of the existing definitions of food traceability, and thus proposes a new one that aims to be simpler, general, and encompassing than the previous ones. We also propose, through this article, a new architecture for IoT-based food traceability systems as well as a new classification of technologies used in this context. We do not miss discussing the applications of different technologies and future trends in the field of IoT-based food traceability systems. Mainly, an FTS can make use of three types of technologies: Identification and Monitoring Technologies (IMT), Communication Technologies (CT), and Data Management Technologies (DMT). Improving a food traceability system requires the use of the best new technologies. There is a variety of promising technologies today to enhance FTS, such as fifth-generation (5G) mobile communication systems and distributed ledger technology (DLT).

Mehannaoui R, Mouss K-N, AKSA K. IoT-based food traceability system: Architecture, technologies, applications, and future trends. Food Control [Internet]. 2023;145. Publisher's VersionAbstract

An effective Food Traceability System (FTS) in a Food Supply Chain (FSC) should adequately provide all necessary information to the consumer(s), meet the requirements of the relevant agencies, and improve food safety as well as consumer confidence. New information and communication technologies are rapidly advancing, especially after the emergence of the Internet of Things (IoT). Consequently, new food traceability systems have become mainly based on IoT. Many studies have been conducted on food traceability. They mainly focused on the practical implementation and theoretical concepts. Accordingly, various definitions, technologies, and principles have been proposed. The “traceability” concept has been defined in several ways and each new definition has tried to generalize its previous ones. Nevertheless, no standard definition has been reached. Furthermore, the architecture of IoT-based food traceability systems has not yet been standardized. Similarly, used technologies in this field have not been yet well classified. This article presents an analysis of the existing definitions of food traceability, and thus proposes a new one that aims to be simpler, general, and encompassing than the previous ones. We also propose, through this article, a new architecture for IoT-based food traceability systems as well as a new classification of technologies used in this context. We do not miss discussing the applications of different technologies and future trends in the field of IoT-based food traceability systems. Mainly, an FTS can make use of three types of technologies: Identification and Monitoring Technologies (IMT), Communication Technologies (CT), and Data Management Technologies (DMT). Improving a food traceability system requires the use of the best new technologies. There is a variety of promising technologies today to enhance FTS, such as fifth-generation (5G) mobile communication systems and distributed ledger technology (DLT).

Mehannaoui R, Mouss K-N, AKSA K. IoT-based food traceability system: Architecture, technologies, applications, and future trends. Food Control [Internet]. 2023;145. Publisher's VersionAbstract

An effective Food Traceability System (FTS) in a Food Supply Chain (FSC) should adequately provide all necessary information to the consumer(s), meet the requirements of the relevant agencies, and improve food safety as well as consumer confidence. New information and communication technologies are rapidly advancing, especially after the emergence of the Internet of Things (IoT). Consequently, new food traceability systems have become mainly based on IoT. Many studies have been conducted on food traceability. They mainly focused on the practical implementation and theoretical concepts. Accordingly, various definitions, technologies, and principles have been proposed. The “traceability” concept has been defined in several ways and each new definition has tried to generalize its previous ones. Nevertheless, no standard definition has been reached. Furthermore, the architecture of IoT-based food traceability systems has not yet been standardized. Similarly, used technologies in this field have not been yet well classified. This article presents an analysis of the existing definitions of food traceability, and thus proposes a new one that aims to be simpler, general, and encompassing than the previous ones. We also propose, through this article, a new architecture for IoT-based food traceability systems as well as a new classification of technologies used in this context. We do not miss discussing the applications of different technologies and future trends in the field of IoT-based food traceability systems. Mainly, an FTS can make use of three types of technologies: Identification and Monitoring Technologies (IMT), Communication Technologies (CT), and Data Management Technologies (DMT). Improving a food traceability system requires the use of the best new technologies. There is a variety of promising technologies today to enhance FTS, such as fifth-generation (5G) mobile communication systems and distributed ledger technology (DLT).

Abdessemed A-A, Mouss L-H, Benaggoune K. BASA: An improved hybrid bees algorithm for the single machine scheduling with early/tardy jobs. International Journal of Production Management and Engineering [Internet]. 2023;11 (2) :167-177. Publisher's VersionAbstract

In this paper, we present a novel hybrid meta-heuristic by enhancing the Basic Bees Algorithm through the integration of a local search method namely Simulated Annealing and Variable Neighbourhood Search like algorithm. The resulted hybrid bees algorithm (BASA) is used to solve the Single Machine Scheduling Problem with Early/Tardy jobs, where the generated outcomes are compared against the Basic Bees Algorithm (BA), and against some stat-of-the-art meta-heuristics. Computational results reveal that our proposed framework outperforms the Basic Bees Algorithm, and demonstrates a competitive performance compared with some algorithms extracted from the literature.

Abdessemed A-A, Mouss L-H, Benaggoune K. BASA: An improved hybrid bees algorithm for the single machine scheduling with early/tardy jobs. International Journal of Production Management and Engineering [Internet]. 2023;11 (2) :167-177. Publisher's VersionAbstract

In this paper, we present a novel hybrid meta-heuristic by enhancing the Basic Bees Algorithm through the integration of a local search method namely Simulated Annealing and Variable Neighbourhood Search like algorithm. The resulted hybrid bees algorithm (BASA) is used to solve the Single Machine Scheduling Problem with Early/Tardy jobs, where the generated outcomes are compared against the Basic Bees Algorithm (BA), and against some stat-of-the-art meta-heuristics. Computational results reveal that our proposed framework outperforms the Basic Bees Algorithm, and demonstrates a competitive performance compared with some algorithms extracted from the literature.

Abdessemed A-A, Mouss L-H, Benaggoune K. BASA: An improved hybrid bees algorithm for the single machine scheduling with early/tardy jobs. International Journal of Production Management and Engineering [Internet]. 2023;11 (2) :167-177. Publisher's VersionAbstract

In this paper, we present a novel hybrid meta-heuristic by enhancing the Basic Bees Algorithm through the integration of a local search method namely Simulated Annealing and Variable Neighbourhood Search like algorithm. The resulted hybrid bees algorithm (BASA) is used to solve the Single Machine Scheduling Problem with Early/Tardy jobs, where the generated outcomes are compared against the Basic Bees Algorithm (BA), and against some stat-of-the-art meta-heuristics. Computational results reveal that our proposed framework outperforms the Basic Bees Algorithm, and demonstrates a competitive performance compared with some algorithms extracted from the literature.

Malki M, Chatouh K. Construction of linear codes over $\mathfrak{R}=\sum_{s=0}^{4} v_{5}^{s}\mathcal{A}_{4}$. MATHEMATICAL MODELING AND COMPUTING [Internet]. 2023;10 (1) :147–158. Publisher's VersionAbstract

The aim of this paper is to propose a new family of codes.  We define this family over the ring R=∑4s=0vs5A4R=∑s=04v5sA4, with v55=v5v55=v5.  We derive its properties, a generator matrix and Gray images.  This new family of codes is illustrated by three applications.

Malki M, Chatouh K. Construction of linear codes over $\mathfrak{R}=\sum_{s=0}^{4} v_{5}^{s}\mathcal{A}_{4}$. MATHEMATICAL MODELING AND COMPUTING [Internet]. 2023;10 (1) :147–158. Publisher's VersionAbstract

The aim of this paper is to propose a new family of codes.  We define this family over the ring R=∑4s=0vs5A4R=∑s=04v5sA4, with v55=v5v55=v5.  We derive its properties, a generator matrix and Gray images.  This new family of codes is illustrated by three applications.

Saidani A, KALLA M, Bendib K. The premise of a participatory management of urban space. Neighborhood associations: Commitment, militancy and challenge the case of the city of Batna, Algeria. GEOGRAPHY [Internet]. 2023. Publisher's VersionAbstract

From the 1990s, urban policy in Algeria underwent significant upheavals, including authoritarian management, which was replaced by participatory management. Following the example of Algerian cities, the city of Batna adheres with this new vision, hence the implementation of a partnership program that involves various stakeholders including the citizen. The latter is present within multiple associations. The objective of this work is to highlight the activism of neighborhood associations as a representative element of civil society and their determining role in the management of different situations. To report on this issue, a field survey was conducted in the form of semi-directive interviews addressed to the three local actors: associations, citizens and elected officials.

Saidani A, KALLA M, Bendib K. The premise of a participatory management of urban space. Neighborhood associations: Commitment, militancy and challenge the case of the city of Batna, Algeria. GEOGRAPHY [Internet]. 2023. Publisher's VersionAbstract

From the 1990s, urban policy in Algeria underwent significant upheavals, including authoritarian management, which was replaced by participatory management. Following the example of Algerian cities, the city of Batna adheres with this new vision, hence the implementation of a partnership program that involves various stakeholders including the citizen. The latter is present within multiple associations. The objective of this work is to highlight the activism of neighborhood associations as a representative element of civil society and their determining role in the management of different situations. To report on this issue, a field survey was conducted in the form of semi-directive interviews addressed to the three local actors: associations, citizens and elected officials.

Saidani A, KALLA M, Bendib K. The premise of a participatory management of urban space. Neighborhood associations: Commitment, militancy and challenge the case of the city of Batna, Algeria. GEOGRAPHY [Internet]. 2023. Publisher's VersionAbstract

From the 1990s, urban policy in Algeria underwent significant upheavals, including authoritarian management, which was replaced by participatory management. Following the example of Algerian cities, the city of Batna adheres with this new vision, hence the implementation of a partnership program that involves various stakeholders including the citizen. The latter is present within multiple associations. The objective of this work is to highlight the activism of neighborhood associations as a representative element of civil society and their determining role in the management of different situations. To report on this issue, a field survey was conducted in the form of semi-directive interviews addressed to the three local actors: associations, citizens and elected officials.

Khatir A, Bouchama Z, Benaggoune S, Zerroug N. Indirect adaptive fuzzy finite time synergetic control for power systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Budget constraints in a world ravenous for electrical power have led utility companies to operate generating stations with full power and sometimes at the limit of stability. In such drastic conditions the occurrence of any contingency or disturbance may lead to a critical situation starting with poorly damped oscillations followed by loss of synchronism and power system instability. In the past decades, the utilization of supplementary excitation control signals for improving power system stability has received much attention. Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp low-frequency oscillations caused by load disturbances or short-circuit faults.

Problem. Adaptive power system stabilizers have been proposed to adequately deal with a wide range of operating conditions, but they suffer from the major drawback of requiring parameter model identification, state observation and on-line feedback gain computation. Power systems are nonlinear systems, with configurations and parameters that fluctuate with time that which require a fully nonlinear model and an adaptive control scheme for a practical operating environment. A new nonlinear adaptive fuzzy approach based on synergetic control theory which has been developed for nonlinear power system stabilizers to overcome above mentioned problems.

Aim. Synergetic control theory has been successfully applied in the design of power system stabilizers is a most promising robust control technique relying on the same principle of invariance found in sliding mode control, but without its chattering drawback. In most of its applications, synergetic control law was designed based on an asymptotic stability analysis and the system trajectories evolve to a specified attractor reaching the equilibrium in an infinite time. In this paper an indirect finite time adaptive fuzzy synergetic power system stabilizer for damping local and inter-area modes of oscillations for power systems is presented. 

Methodology. The proposed controller design is based on an adaptive fuzzy control combining a synergetic control theory with a finite-time attractor and Lyapunov synthesis. Enhancing existing adaptive fuzzy synergetic power system stabilizer, where fuzzy systems are used to approximate unknown system dynamics and robust synergetic control for only providing asymptotic stability of the closed-loop system, the proposed technique procures finite time convergence property in the derivation of the continuous synergetic control law. Analytical proofs for finite time convergence are presented confirming that the proposed adaptive scheme can guarantee that system signals are bounded and finite time stability obtained. 

Results. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results are compared to those obtained with a conventional adaptive fuzzy synergetic controller.

Khatir A, Bouchama Z, Benaggoune S, Zerroug N. Indirect adaptive fuzzy finite time synergetic control for power systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Budget constraints in a world ravenous for electrical power have led utility companies to operate generating stations with full power and sometimes at the limit of stability. In such drastic conditions the occurrence of any contingency or disturbance may lead to a critical situation starting with poorly damped oscillations followed by loss of synchronism and power system instability. In the past decades, the utilization of supplementary excitation control signals for improving power system stability has received much attention. Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp low-frequency oscillations caused by load disturbances or short-circuit faults.

Problem. Adaptive power system stabilizers have been proposed to adequately deal with a wide range of operating conditions, but they suffer from the major drawback of requiring parameter model identification, state observation and on-line feedback gain computation. Power systems are nonlinear systems, with configurations and parameters that fluctuate with time that which require a fully nonlinear model and an adaptive control scheme for a practical operating environment. A new nonlinear adaptive fuzzy approach based on synergetic control theory which has been developed for nonlinear power system stabilizers to overcome above mentioned problems.

Aim. Synergetic control theory has been successfully applied in the design of power system stabilizers is a most promising robust control technique relying on the same principle of invariance found in sliding mode control, but without its chattering drawback. In most of its applications, synergetic control law was designed based on an asymptotic stability analysis and the system trajectories evolve to a specified attractor reaching the equilibrium in an infinite time. In this paper an indirect finite time adaptive fuzzy synergetic power system stabilizer for damping local and inter-area modes of oscillations for power systems is presented. 

Methodology. The proposed controller design is based on an adaptive fuzzy control combining a synergetic control theory with a finite-time attractor and Lyapunov synthesis. Enhancing existing adaptive fuzzy synergetic power system stabilizer, where fuzzy systems are used to approximate unknown system dynamics and robust synergetic control for only providing asymptotic stability of the closed-loop system, the proposed technique procures finite time convergence property in the derivation of the continuous synergetic control law. Analytical proofs for finite time convergence are presented confirming that the proposed adaptive scheme can guarantee that system signals are bounded and finite time stability obtained. 

Results. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results are compared to those obtained with a conventional adaptive fuzzy synergetic controller.

Khatir A, Bouchama Z, Benaggoune S, Zerroug N. Indirect adaptive fuzzy finite time synergetic control for power systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Budget constraints in a world ravenous for electrical power have led utility companies to operate generating stations with full power and sometimes at the limit of stability. In such drastic conditions the occurrence of any contingency or disturbance may lead to a critical situation starting with poorly damped oscillations followed by loss of synchronism and power system instability. In the past decades, the utilization of supplementary excitation control signals for improving power system stability has received much attention. Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp low-frequency oscillations caused by load disturbances or short-circuit faults.

Problem. Adaptive power system stabilizers have been proposed to adequately deal with a wide range of operating conditions, but they suffer from the major drawback of requiring parameter model identification, state observation and on-line feedback gain computation. Power systems are nonlinear systems, with configurations and parameters that fluctuate with time that which require a fully nonlinear model and an adaptive control scheme for a practical operating environment. A new nonlinear adaptive fuzzy approach based on synergetic control theory which has been developed for nonlinear power system stabilizers to overcome above mentioned problems.

Aim. Synergetic control theory has been successfully applied in the design of power system stabilizers is a most promising robust control technique relying on the same principle of invariance found in sliding mode control, but without its chattering drawback. In most of its applications, synergetic control law was designed based on an asymptotic stability analysis and the system trajectories evolve to a specified attractor reaching the equilibrium in an infinite time. In this paper an indirect finite time adaptive fuzzy synergetic power system stabilizer for damping local and inter-area modes of oscillations for power systems is presented. 

Methodology. The proposed controller design is based on an adaptive fuzzy control combining a synergetic control theory with a finite-time attractor and Lyapunov synthesis. Enhancing existing adaptive fuzzy synergetic power system stabilizer, where fuzzy systems are used to approximate unknown system dynamics and robust synergetic control for only providing asymptotic stability of the closed-loop system, the proposed technique procures finite time convergence property in the derivation of the continuous synergetic control law. Analytical proofs for finite time convergence are presented confirming that the proposed adaptive scheme can guarantee that system signals are bounded and finite time stability obtained. 

Results. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results are compared to those obtained with a conventional adaptive fuzzy synergetic controller.

Khatir A, Bouchama Z, Benaggoune S, Zerroug N. Indirect adaptive fuzzy finite time synergetic control for power systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Budget constraints in a world ravenous for electrical power have led utility companies to operate generating stations with full power and sometimes at the limit of stability. In such drastic conditions the occurrence of any contingency or disturbance may lead to a critical situation starting with poorly damped oscillations followed by loss of synchronism and power system instability. In the past decades, the utilization of supplementary excitation control signals for improving power system stability has received much attention. Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp low-frequency oscillations caused by load disturbances or short-circuit faults.

Problem. Adaptive power system stabilizers have been proposed to adequately deal with a wide range of operating conditions, but they suffer from the major drawback of requiring parameter model identification, state observation and on-line feedback gain computation. Power systems are nonlinear systems, with configurations and parameters that fluctuate with time that which require a fully nonlinear model and an adaptive control scheme for a practical operating environment. A new nonlinear adaptive fuzzy approach based on synergetic control theory which has been developed for nonlinear power system stabilizers to overcome above mentioned problems.

Aim. Synergetic control theory has been successfully applied in the design of power system stabilizers is a most promising robust control technique relying on the same principle of invariance found in sliding mode control, but without its chattering drawback. In most of its applications, synergetic control law was designed based on an asymptotic stability analysis and the system trajectories evolve to a specified attractor reaching the equilibrium in an infinite time. In this paper an indirect finite time adaptive fuzzy synergetic power system stabilizer for damping local and inter-area modes of oscillations for power systems is presented. 

Methodology. The proposed controller design is based on an adaptive fuzzy control combining a synergetic control theory with a finite-time attractor and Lyapunov synthesis. Enhancing existing adaptive fuzzy synergetic power system stabilizer, where fuzzy systems are used to approximate unknown system dynamics and robust synergetic control for only providing asymptotic stability of the closed-loop system, the proposed technique procures finite time convergence property in the derivation of the continuous synergetic control law. Analytical proofs for finite time convergence are presented confirming that the proposed adaptive scheme can guarantee that system signals are bounded and finite time stability obtained. 

Results. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results are compared to those obtained with a conventional adaptive fuzzy synergetic controller.

Hessad M-A, Bouchama Z, Benaggoune S, Behih K. Cascade sliding mode maximum power point tracking controller for photovoltaic systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Constant increases in power consumption by both industrial and individual users may cause depletion of fossil fuels and environmental pollution, and hence there is a growing interest in clean and renewable energy resources. Photovoltaic power generation systems are playing an important role as a clean power electricity source in meeting future electricity demands.

 Problem. All photovoltaic systems have two problems; the first one being the very low electric-power generation efficiency, especially under low-irradiation states; the second resides in the interdependence of the amount of the electric power generated by solar arrays and the ever changing weather conditions. Load mismatch can occur under these weather varying conditions such that maximum power is not extracted and delivered to the load. This issue constitutes the so-called maximum power point tracking problem. 

Aim. Many methods have been developed to determine the maximum power point under all conditions. There are various methods, in most of them based on the well-known principle of perturb and observe. In this method, the operating point oscillates at a certain amplitude, no matter whether the maximum power point is reached or not. That is, this oscillation remains even in the steady state after reaching the maximum power point, which leads to power loss. This is an essential drawback of the previous method. In this paper, a cascade sliding mode maximum power point tracking control for a photovoltaic system is proposed to overcome above mentioned problems. 

Methodology. The photovoltaic system is mainly composed of a solar array, DC/DC boost converter, cascade sliding mode controller, and an output load. Two sliding mode control design strategies are joined to construct the proposed controller. The primary sliding mode algorithm is designed for maximum power point searching, i.e., to track the output reference voltage of the solar array. This voltage is used to manipulate the setpoint of the secondary sliding mode controller, which is used via the DC-DC boost converter to achieve maximum power output. 

Results. This novel approach provides a good transient response, a low tracking error and a very fast reaction against the solar radiation and photovoltaic cell temperature variations. The simulation results demonstrate the effectiveness of the proposed approach in the presence of environmental disturbances.

Hessad M-A, Bouchama Z, Benaggoune S, Behih K. Cascade sliding mode maximum power point tracking controller for photovoltaic systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Constant increases in power consumption by both industrial and individual users may cause depletion of fossil fuels and environmental pollution, and hence there is a growing interest in clean and renewable energy resources. Photovoltaic power generation systems are playing an important role as a clean power electricity source in meeting future electricity demands.

 Problem. All photovoltaic systems have two problems; the first one being the very low electric-power generation efficiency, especially under low-irradiation states; the second resides in the interdependence of the amount of the electric power generated by solar arrays and the ever changing weather conditions. Load mismatch can occur under these weather varying conditions such that maximum power is not extracted and delivered to the load. This issue constitutes the so-called maximum power point tracking problem. 

Aim. Many methods have been developed to determine the maximum power point under all conditions. There are various methods, in most of them based on the well-known principle of perturb and observe. In this method, the operating point oscillates at a certain amplitude, no matter whether the maximum power point is reached or not. That is, this oscillation remains even in the steady state after reaching the maximum power point, which leads to power loss. This is an essential drawback of the previous method. In this paper, a cascade sliding mode maximum power point tracking control for a photovoltaic system is proposed to overcome above mentioned problems. 

Methodology. The photovoltaic system is mainly composed of a solar array, DC/DC boost converter, cascade sliding mode controller, and an output load. Two sliding mode control design strategies are joined to construct the proposed controller. The primary sliding mode algorithm is designed for maximum power point searching, i.e., to track the output reference voltage of the solar array. This voltage is used to manipulate the setpoint of the secondary sliding mode controller, which is used via the DC-DC boost converter to achieve maximum power output. 

Results. This novel approach provides a good transient response, a low tracking error and a very fast reaction against the solar radiation and photovoltaic cell temperature variations. The simulation results demonstrate the effectiveness of the proposed approach in the presence of environmental disturbances.

Hessad M-A, Bouchama Z, Benaggoune S, Behih K. Cascade sliding mode maximum power point tracking controller for photovoltaic systems. Power Stations, Grids and Systems [Internet]. 2023;1. Publisher's VersionAbstract

Introduction. Constant increases in power consumption by both industrial and individual users may cause depletion of fossil fuels and environmental pollution, and hence there is a growing interest in clean and renewable energy resources. Photovoltaic power generation systems are playing an important role as a clean power electricity source in meeting future electricity demands.

 Problem. All photovoltaic systems have two problems; the first one being the very low electric-power generation efficiency, especially under low-irradiation states; the second resides in the interdependence of the amount of the electric power generated by solar arrays and the ever changing weather conditions. Load mismatch can occur under these weather varying conditions such that maximum power is not extracted and delivered to the load. This issue constitutes the so-called maximum power point tracking problem. 

Aim. Many methods have been developed to determine the maximum power point under all conditions. There are various methods, in most of them based on the well-known principle of perturb and observe. In this method, the operating point oscillates at a certain amplitude, no matter whether the maximum power point is reached or not. That is, this oscillation remains even in the steady state after reaching the maximum power point, which leads to power loss. This is an essential drawback of the previous method. In this paper, a cascade sliding mode maximum power point tracking control for a photovoltaic system is proposed to overcome above mentioned problems. 

Methodology. The photovoltaic system is mainly composed of a solar array, DC/DC boost converter, cascade sliding mode controller, and an output load. Two sliding mode control design strategies are joined to construct the proposed controller. The primary sliding mode algorithm is designed for maximum power point searching, i.e., to track the output reference voltage of the solar array. This voltage is used to manipulate the setpoint of the secondary sliding mode controller, which is used via the DC-DC boost converter to achieve maximum power output. 

Results. This novel approach provides a good transient response, a low tracking error and a very fast reaction against the solar radiation and photovoltaic cell temperature variations. The simulation results demonstrate the effectiveness of the proposed approach in the presence of environmental disturbances.

Pages