Citation:
Date Published:
2021Abstract:
On one hand, there are many proposed intrusion detection systems (IDSs) in the literature. On the other hand, many studies try to deduce the important features that can best detect attacks. This paper presents a new and an easy-to-implement approach to intrusion detection, named distance sum-based k-nearest neighbors (DS-kNN), which is an improved version of k-NN classifier. Given a data sample to classify, DS-kNN computes the distance sum of the k-nearest neighbors of the data sample in each of the possible classes of the dataset. Then, the data sample is assigned to the class having the smallest sum. The experimental results show that the DS-kNN classifier performs better than the original k-NN algorithm in terms of accuracy, detection rate, false positive, and attacks classification. The authors mainly compare DS-kNN to CANN, but also to SVM, S-NDAE, and DBN. The obtained results also show that the approach is very competitive.