Fault prognostics of rolling element bearing based on feature extraction and supervised machine learning: Application to shaft wind turbine gearbox using vibration signal

Citation:

Gougam F, Chemseddine R, Benazzouz D, Zerhouni N, Benaggoune K. Fault prognostics of rolling element bearing based on feature extraction and supervised machine learning: Application to shaft wind turbine gearbox using vibration signal. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [Internet]. 2021;235 (20).

Abstract:

Renewable energies offer new solutions to an ever-increasing energy demand. Wind energy is one of the main sources of electricity production, which uses winds to be converted to electrical energy with lower cost and environment saving. The major failures of a wind turbine occur in the bearings of high-speed shafts. This paper proposes the use of optimized machine learning to predict the Remaining Useful Life (RUL) of bearing based on vibration data and features extraction. Significant features are extracted from filtered band-pass of the squared raw signal where the health indicators are automatically selected using relief technique. Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) by Partical Swarm Optimization (PSO) is used to model the non linear degradation of the extracted indicators. The proposed approach is applied on experimental setup of wind turbine where the results show its effectiveness for RUL estimation.

Website