Citation:
Date Published:
2022Abstract:
Turbulent flows are characterized by the presence of "scales of fluctuations", or "structures" of varying magnitudes, the effects in which the mixing, transfer and dissipation of energy are preponderant. Most importantly, dissipation determines the depth profile of the flow. This contribution aims to implement a model able to predict unsteady turbulent flows generated by the presence of obstacles in a channel with complex geometry and to report, where the complexity of the phenomena are observed, such as: the separation of the boundary layer, the succession of vortices, local heat transfers, and the recirculation zones in the wake of obstacles and the oscillatory regime of the hydraulic jump for which this research is of exclusive interest. The current work therefore, presents the numerical simulation in unsteady turbulent regime based on the resolution of balance equations, using the RANS (Reynolds-Averaged Navier–Stokes) approach with an RNG k−ε closure model. To solve the incompressible Navier–Stokes equations governing these flows, we appealed to the motivated finite volume method, and its ability to process complex geometries. The simulation software FLUENT we used is based on the finite volume method. It allows to explore, the velocity and pressure fields in the digital channel of the studied flows.