Numerical investigation of the structural-response analysis of a glass/epoxy composite blade for small-scale vertical-axis wind turbine

Abstract:

A Vertical Axis Wind Turbine (VAWT) comprises multiple parts constructed from different materials. This complexity presents challenges in designing the blade structure. In this study, we investigated a structural optimization of a small-scale blade for a VAWT, with Finite Element Analysis (FEA) model. The purpose is to minimize the blade mass while adhering to a suite of critical wind conditions according to the IEC 61400-2 Standard. The structure made from Aluminum material simulates structure’s global behavior to determine maximum stress and deflection levels. The same structure is modeled using Glass/Epoxy composite for optimizing its design. Twenty combinations of Glass/Epoxy layers, varying in ply thickness and orientation, are simulated to find the most suitable combination. Results demonstrated that the optimization case [45°/90°/0°/−45°] obtained the minimum values of stress and deflection, is 59% lighter than Aluminum blade (initial design). The designed Glass/Epoxy composite blade is acceptable and recommended for structural safety.

Publisher's Version