Publications

2022
Berghout T, Benbouzid M, Bentrcia T, Amirat Y, Mouss L{\"ıla-H. Exposing Deep Representations to a Recurrent Expansion with Multiple Repeats for Fuel Cells Time Series Prognosis. Le{\"ıla-Hayet [Internet]. 2022;24 (7). Publisher's VersionAbstract
The green conversion of proton exchange membrane fuel cells (PEMFCs) has received particular attention in both stationary and transportation applications. However, the poor durability of PEMFC represents a major problem that hampers its commercial application since dynamic operating conditions, including physical deterioration, have a serious impact on the cell performance. Under these circumstances, prognosis and health management (PHM) plays an important role in prolonging durability and preventing damage propagation via the accurate planning of a condition-based maintenance (CBM) schedule. In this specific topic, health deterioration modeling with deep learning (DL) is the widely studied representation learning tool due to its adaptation ability to rapid changes in data complexity and drift. In this context, the present paper proposes an investigation of further deeper representations by exposing DL models themselves to recurrent expansion with multiple repeats. Such a recurrent expansion of DL (REDL) allows new, more meaningful representations to be explored by repeatedly using generated feature maps and responses to create new robust models. The proposed REDL, which is designed to be an adaptive learning algorithm, is tested on a PEMFC deterioration dataset and compared to its deep learning baseline version under time series analysis. Using multiple numeric and visual metrics, the results support the REDL learning scheme by showing promising performances.
Berghout T, Benbouzid M, Bentrcia T, Amirat Y, Mouss L{\"ıla-H. Exposing Deep Representations to a Recurrent Expansion with Multiple Repeats for Fuel Cells Time Series Prognosis. Le{\"ıla-Hayet [Internet]. 2022;24 (7). Publisher's VersionAbstract
The green conversion of proton exchange membrane fuel cells (PEMFCs) has received particular attention in both stationary and transportation applications. However, the poor durability of PEMFC represents a major problem that hampers its commercial application since dynamic operating conditions, including physical deterioration, have a serious impact on the cell performance. Under these circumstances, prognosis and health management (PHM) plays an important role in prolonging durability and preventing damage propagation via the accurate planning of a condition-based maintenance (CBM) schedule. In this specific topic, health deterioration modeling with deep learning (DL) is the widely studied representation learning tool due to its adaptation ability to rapid changes in data complexity and drift. In this context, the present paper proposes an investigation of further deeper representations by exposing DL models themselves to recurrent expansion with multiple repeats. Such a recurrent expansion of DL (REDL) allows new, more meaningful representations to be explored by repeatedly using generated feature maps and responses to create new robust models. The proposed REDL, which is designed to be an adaptive learning algorithm, is tested on a PEMFC deterioration dataset and compared to its deep learning baseline version under time series analysis. Using multiple numeric and visual metrics, the results support the REDL learning scheme by showing promising performances.
Berghout T, Benbouzid M, Bentrcia T, Amirat Y, Mouss L{\"ıla-H. Exposing Deep Representations to a Recurrent Expansion with Multiple Repeats for Fuel Cells Time Series Prognosis. Le{\"ıla-Hayet [Internet]. 2022;24 (7). Publisher's VersionAbstract
The green conversion of proton exchange membrane fuel cells (PEMFCs) has received particular attention in both stationary and transportation applications. However, the poor durability of PEMFC represents a major problem that hampers its commercial application since dynamic operating conditions, including physical deterioration, have a serious impact on the cell performance. Under these circumstances, prognosis and health management (PHM) plays an important role in prolonging durability and preventing damage propagation via the accurate planning of a condition-based maintenance (CBM) schedule. In this specific topic, health deterioration modeling with deep learning (DL) is the widely studied representation learning tool due to its adaptation ability to rapid changes in data complexity and drift. In this context, the present paper proposes an investigation of further deeper representations by exposing DL models themselves to recurrent expansion with multiple repeats. Such a recurrent expansion of DL (REDL) allows new, more meaningful representations to be explored by repeatedly using generated feature maps and responses to create new robust models. The proposed REDL, which is designed to be an adaptive learning algorithm, is tested on a PEMFC deterioration dataset and compared to its deep learning baseline version under time series analysis. Using multiple numeric and visual metrics, the results support the REDL learning scheme by showing promising performances.
AKSA K. Graph theory. Editions universitaires européennes.; 2022 pp. 76.Abstract
Graph theory is a vast field that constitutes a very important body of knowledge. Indeed, this book is just an introduction aiming at clarifying some essential points in this vital field: basic notions, some basic algorithms that are used to solve some classical and famous problems like path finding, tree finding, flow finding, ...etc. Finally, graph theory can be summarized by what Napoleon said: "A little drawing is better than a big speech".
Berghout T, Bentrcia T, Ferrag M-A, Benbouzid M. A Heterogeneous Federated Transfer Learning Approach with Extreme Aggregation and Speed. Mathematics [Internet]. 2022;10 (19). Publisher's VersionAbstract
Federated learning (FL) is a data-privacy-preserving, decentralized process that allows local edge devices of smart infrastructures to train a collaborative model independently while keeping data localized. FL algorithms, encompassing a well-structured average of the training parameters (e.g., the weights and biases resulting from training-based stochastic gradient descent variants), are subject to many challenges, namely expensive communication, systems heterogeneity, statistical heterogeneity, and privacy concerns. In this context, our paper targets the four aforementioned challenges while focusing on reducing communication and computational costs by involving recursive least squares (RLS) training rules. Accordingly, to the best of our knowledge, this is the first time that the RLS algorithm is modified to completely accommodate non-independent and identically distributed data (non-IID) for federated transfer learning (FTL). Furthermore, this paper also introduces a newly generated dataset capable of emulating such real conditions and of making data investigation available on ordinary commercial computers with quad-core microprocessors and less need for higher computing hardware. Applications of FTL-RLS on the generated data under different levels of complexity closely related to different levels of cardinality lead to a variety of conclusions supporting its performance for future uses.
Berghout T, Bentrcia T, Ferrag M-A, Benbouzid M. A Heterogeneous Federated Transfer Learning Approach with Extreme Aggregation and Speed. Mathematics [Internet]. 2022;10 (19). Publisher's VersionAbstract
Federated learning (FL) is a data-privacy-preserving, decentralized process that allows local edge devices of smart infrastructures to train a collaborative model independently while keeping data localized. FL algorithms, encompassing a well-structured average of the training parameters (e.g., the weights and biases resulting from training-based stochastic gradient descent variants), are subject to many challenges, namely expensive communication, systems heterogeneity, statistical heterogeneity, and privacy concerns. In this context, our paper targets the four aforementioned challenges while focusing on reducing communication and computational costs by involving recursive least squares (RLS) training rules. Accordingly, to the best of our knowledge, this is the first time that the RLS algorithm is modified to completely accommodate non-independent and identically distributed data (non-IID) for federated transfer learning (FTL). Furthermore, this paper also introduces a newly generated dataset capable of emulating such real conditions and of making data investigation available on ordinary commercial computers with quad-core microprocessors and less need for higher computing hardware. Applications of FTL-RLS on the generated data under different levels of complexity closely related to different levels of cardinality lead to a variety of conclusions supporting its performance for future uses.
Berghout T, Bentrcia T, Ferrag M-A, Benbouzid M. A Heterogeneous Federated Transfer Learning Approach with Extreme Aggregation and Speed. Mathematics [Internet]. 2022;10 (19). Publisher's VersionAbstract
Federated learning (FL) is a data-privacy-preserving, decentralized process that allows local edge devices of smart infrastructures to train a collaborative model independently while keeping data localized. FL algorithms, encompassing a well-structured average of the training parameters (e.g., the weights and biases resulting from training-based stochastic gradient descent variants), are subject to many challenges, namely expensive communication, systems heterogeneity, statistical heterogeneity, and privacy concerns. In this context, our paper targets the four aforementioned challenges while focusing on reducing communication and computational costs by involving recursive least squares (RLS) training rules. Accordingly, to the best of our knowledge, this is the first time that the RLS algorithm is modified to completely accommodate non-independent and identically distributed data (non-IID) for federated transfer learning (FTL). Furthermore, this paper also introduces a newly generated dataset capable of emulating such real conditions and of making data investigation available on ordinary commercial computers with quad-core microprocessors and less need for higher computing hardware. Applications of FTL-RLS on the generated data under different levels of complexity closely related to different levels of cardinality lead to a variety of conclusions supporting its performance for future uses.
Berghout T, Bentrcia T, Ferrag M-A, Benbouzid M. A Heterogeneous Federated Transfer Learning Approach with Extreme Aggregation and Speed. Mathematics [Internet]. 2022;10 (19). Publisher's VersionAbstract
Federated learning (FL) is a data-privacy-preserving, decentralized process that allows local edge devices of smart infrastructures to train a collaborative model independently while keeping data localized. FL algorithms, encompassing a well-structured average of the training parameters (e.g., the weights and biases resulting from training-based stochastic gradient descent variants), are subject to many challenges, namely expensive communication, systems heterogeneity, statistical heterogeneity, and privacy concerns. In this context, our paper targets the four aforementioned challenges while focusing on reducing communication and computational costs by involving recursive least squares (RLS) training rules. Accordingly, to the best of our knowledge, this is the first time that the RLS algorithm is modified to completely accommodate non-independent and identically distributed data (non-IID) for federated transfer learning (FTL). Furthermore, this paper also introduces a newly generated dataset capable of emulating such real conditions and of making data investigation available on ordinary commercial computers with quad-core microprocessors and less need for higher computing hardware. Applications of FTL-RLS on the generated data under different levels of complexity closely related to different levels of cardinality lead to a variety of conclusions supporting its performance for future uses.
Tarek B, Benbouzid M, Amirat Y. Improving Small-scale Machine Learning with Recurrent Expansion for Fuel Cells Time Series Prognosis. 48th Annual Conference of the IEEE Industrial Electronics Society (IECON 2022) [Internet]. 2022. Publisher's VersionAbstract
The clean energy conversion characteristics of proton exchange membrane fuel cells (PEMFCs) have given rise to many applications, particularly in transportation. Unfortunately, the commercial application of PEMFCs is hampered by the early deterioration and low durability of the cells. In this case, accurate real-time condition monitoring plays an important role in extending the lifespan of PEMFCs through accurate planning of maintenance tasks. Accordingly, among the widely used modeling tools such as model-driven and data-driven, machine learning has received much attention and has been extensively studied in the literature. Small-scale machine learning (SML) and Deep Learning (DL) are subcategories of machine learning that have been exploited so far. In this context and since SML usually contains non-expansive approximators, this study was dedicated to improving its feature representations for better predictions. Therefore, a recurrent expansion experiment was conducted for several rounds to investigate a linear regression model under time series prognosis of PEMFCs. The results revealed that the prediction performance of SML tools under stationary conditions could be further improved.
Tarek B, Benbouzid M, Amirat Y. Improving Small-scale Machine Learning with Recurrent Expansion for Fuel Cells Time Series Prognosis. 48th Annual Conference of the IEEE Industrial Electronics Society (IECON 2022) [Internet]. 2022. Publisher's VersionAbstract
The clean energy conversion characteristics of proton exchange membrane fuel cells (PEMFCs) have given rise to many applications, particularly in transportation. Unfortunately, the commercial application of PEMFCs is hampered by the early deterioration and low durability of the cells. In this case, accurate real-time condition monitoring plays an important role in extending the lifespan of PEMFCs through accurate planning of maintenance tasks. Accordingly, among the widely used modeling tools such as model-driven and data-driven, machine learning has received much attention and has been extensively studied in the literature. Small-scale machine learning (SML) and Deep Learning (DL) are subcategories of machine learning that have been exploited so far. In this context and since SML usually contains non-expansive approximators, this study was dedicated to improving its feature representations for better predictions. Therefore, a recurrent expansion experiment was conducted for several rounds to investigate a linear regression model under time series prognosis of PEMFCs. The results revealed that the prediction performance of SML tools under stationary conditions could be further improved.
Tarek B, Benbouzid M, Amirat Y. Improving Small-scale Machine Learning with Recurrent Expansion for Fuel Cells Time Series Prognosis. 48th Annual Conference of the IEEE Industrial Electronics Society (IECON 2022) [Internet]. 2022. Publisher's VersionAbstract
The clean energy conversion characteristics of proton exchange membrane fuel cells (PEMFCs) have given rise to many applications, particularly in transportation. Unfortunately, the commercial application of PEMFCs is hampered by the early deterioration and low durability of the cells. In this case, accurate real-time condition monitoring plays an important role in extending the lifespan of PEMFCs through accurate planning of maintenance tasks. Accordingly, among the widely used modeling tools such as model-driven and data-driven, machine learning has received much attention and has been extensively studied in the literature. Small-scale machine learning (SML) and Deep Learning (DL) are subcategories of machine learning that have been exploited so far. In this context and since SML usually contains non-expansive approximators, this study was dedicated to improving its feature representations for better predictions. Therefore, a recurrent expansion experiment was conducted for several rounds to investigate a linear regression model under time series prognosis of PEMFCs. The results revealed that the prediction performance of SML tools under stationary conditions could be further improved.
Zermane H. Improving Supervised Machine Learning Models for Face Recognition: a Comparative Study. 4th International Conference on Engineering Science and Technology (ICEST2022) 16th-7th of February. 2022.
Merghem M, Haoues M, Mouss K-N, Dahane M, SENOUSSI A. Integrated production and maintenance planning in hybrid manufacturing-remanufacturing system with outsourcing opportunities, in 4th International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science. ScienceDirect ; 2022.
Merghem M, Haoues M, Mouss K-N, Dahane M, SENOUSSI A. Integrated production and maintenance planning in hybrid manufacturing-remanufacturing system with outsourcing opportunities, in 4th International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science. ScienceDirect ; 2022.
Merghem M, Haoues M, Mouss K-N, Dahane M, SENOUSSI A. Integrated production and maintenance planning in hybrid manufacturing-remanufacturing system with outsourcing opportunities, in 4th International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science. ScienceDirect ; 2022.
Merghem M, Haoues M, Mouss K-N, Dahane M, SENOUSSI A. Integrated production and maintenance planning in hybrid manufacturing-remanufacturing system with outsourcing opportunities, in 4th International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science. ScienceDirect ; 2022.
Merghem M, Haoues M, Mouss K-N, Dahane M, SENOUSSI A. Integrated production and maintenance planning in hybrid manufacturing-remanufacturing system with outsourcing opportunities, in 4th International Conference on Industry 4.0 and Smart Manufacturing Procedia Computer Science. ScienceDirect ; 2022.
Benaggoune K, Meiling Y, Jemei S, Zerhouni N. A Knowledge Transfer Approach for Online PEMFC Degradation prediction with Uncertainty Quantification. 12th International Conference on Power, Energy and Electrical Engineering (CPEEE) [Internet]. 2022. Publisher's VersionAbstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are a key challenger for the world’s future clean and renewable energy solution. Yet, fuel cells are susceptible to operating conditions and hydrogen impurities, leading to performance loss over time in service. Hence, performance degradation prediction is gaining attention recently for fuel cell system reliability. In this work, we present a knowledge transfer approach for online voltage drop prediction. A dual-path convolution neural network is proposed to extract linearity and non-linearity from historical data and performs multi-steps ahead prediction with uncertainty quantification. Online voltage prediction is then evaluated with and without knowledge transfer using two different PEMFC datasets. Results indicate that our proposed approach with transfer knowledge can predict the voltage drop accurately with a small uncertainty range compared to the conventional approach.
Benaggoune K, Meiling Y, Jemei S, Zerhouni N. A Knowledge Transfer Approach for Online PEMFC Degradation prediction with Uncertainty Quantification. 12th International Conference on Power, Energy and Electrical Engineering (CPEEE) [Internet]. 2022. Publisher's VersionAbstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are a key challenger for the world’s future clean and renewable energy solution. Yet, fuel cells are susceptible to operating conditions and hydrogen impurities, leading to performance loss over time in service. Hence, performance degradation prediction is gaining attention recently for fuel cell system reliability. In this work, we present a knowledge transfer approach for online voltage drop prediction. A dual-path convolution neural network is proposed to extract linearity and non-linearity from historical data and performs multi-steps ahead prediction with uncertainty quantification. Online voltage prediction is then evaluated with and without knowledge transfer using two different PEMFC datasets. Results indicate that our proposed approach with transfer knowledge can predict the voltage drop accurately with a small uncertainty range compared to the conventional approach.
Benaggoune K, Meiling Y, Jemei S, Zerhouni N. A Knowledge Transfer Approach for Online PEMFC Degradation prediction with Uncertainty Quantification. 12th International Conference on Power, Energy and Electrical Engineering (CPEEE) [Internet]. 2022. Publisher's VersionAbstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are a key challenger for the world’s future clean and renewable energy solution. Yet, fuel cells are susceptible to operating conditions and hydrogen impurities, leading to performance loss over time in service. Hence, performance degradation prediction is gaining attention recently for fuel cell system reliability. In this work, we present a knowledge transfer approach for online voltage drop prediction. A dual-path convolution neural network is proposed to extract linearity and non-linearity from historical data and performs multi-steps ahead prediction with uncertainty quantification. Online voltage prediction is then evaluated with and without knowledge transfer using two different PEMFC datasets. Results indicate that our proposed approach with transfer knowledge can predict the voltage drop accurately with a small uncertainty range compared to the conventional approach.

Pages