Publications

2021
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H. Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9. Publisher's VersionAbstract
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H. Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9. Publisher's VersionAbstract
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H. Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9. Publisher's VersionAbstract
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Haoues M, Dahane M, Mouss N-K. Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract
This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
Haoues M, Dahane M, Mouss N-K. Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract
This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
Haoues M, Dahane M, Mouss N-K. Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract
This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
AKSA K. CAPTEURS INTELLIGENTS. Bookelis.; 2021.Abstract
L’évolution récente des moyens de la communication sans fil a permet la manipulation de l’information à travers des unités de calculs portables, appelés capteurs. Ces derniers, qui ont des caractéristiques particulières, sont capables de récolter, de traiter et de transmettre des données environnementales d’une manière autonome.Dans ce livre sont introduites les connaissances de base nécessaires à la bonne compréhension des capteurs intelligents, des réseaux de capteurs et les différents types protocoles de routage spécifiques aux réseaux de capteurs. Nous fournirons ainsi les définitions généralement acceptées par ce type de réseau. Nous aborderons également par une description succincte les principales caractéristiques, contraintes et facteurs conceptuels qui surviennent dans ces réseaux. Nous présenterons ensuite les différentes orientations prises aux applications des réseaux de capteurs.
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145. Publisher's VersionAbstract
A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145. Publisher's VersionAbstract
A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145. Publisher's VersionAbstract
A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145. Publisher's VersionAbstract
A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145. Publisher's VersionAbstract
A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs
HADJIDJ N, Benbrahim M, Berghout T, Mouss L-H. A Comparative Study Between Data-Based Approaches Under Earlier Failure Detection, in ICCIS2020. Vol 204. India: Lecture Notes in Networks and Systems ; 2021 :235–239. Publisher's VersionAbstract
A comparative study between a set of chosen machine learning tools for direct remaining useful life prediction is presented in this work. The main objective of this study is to select the appropriate prediction tool for health estimation of aircraft engines for future uses. The training algorithms are evaluated using “time-varying” data retrieved from Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) developed by NASA. The training and testing processes of each algorithm are carried out under the same circumstances using the similar initial condition and evaluation sets. The results prove that among the studied training tools, Support vector machine (SVM) achieved the best results.
HADJIDJ N, Benbrahim M, Berghout T, Mouss L-H. A Comparative Study Between Data-Based Approaches Under Earlier Failure Detection, in ICCIS2020. Vol 204. India: Lecture Notes in Networks and Systems ; 2021 :235–239. Publisher's VersionAbstract
A comparative study between a set of chosen machine learning tools for direct remaining useful life prediction is presented in this work. The main objective of this study is to select the appropriate prediction tool for health estimation of aircraft engines for future uses. The training algorithms are evaluated using “time-varying” data retrieved from Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) developed by NASA. The training and testing processes of each algorithm are carried out under the same circumstances using the similar initial condition and evaluation sets. The results prove that among the studied training tools, Support vector machine (SVM) achieved the best results.
HADJIDJ N, Benbrahim M, Berghout T, Mouss L-H. A Comparative Study Between Data-Based Approaches Under Earlier Failure Detection, in ICCIS2020. Vol 204. India: Lecture Notes in Networks and Systems ; 2021 :235–239. Publisher's VersionAbstract
A comparative study between a set of chosen machine learning tools for direct remaining useful life prediction is presented in this work. The main objective of this study is to select the appropriate prediction tool for health estimation of aircraft engines for future uses. The training algorithms are evaluated using “time-varying” data retrieved from Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) developed by NASA. The training and testing processes of each algorithm are carried out under the same circumstances using the similar initial condition and evaluation sets. The results prove that among the studied training tools, Support vector machine (SVM) achieved the best results.
HADJIDJ N, Benbrahim M, Berghout T, Mouss L-H. A Comparative Study Between Data-Based Approaches Under Earlier Failure Detection, in ICCIS2020. Vol 204. India: Lecture Notes in Networks and Systems ; 2021 :235–239. Publisher's VersionAbstract
A comparative study between a set of chosen machine learning tools for direct remaining useful life prediction is presented in this work. The main objective of this study is to select the appropriate prediction tool for health estimation of aircraft engines for future uses. The training algorithms are evaluated using “time-varying” data retrieved from Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) developed by NASA. The training and testing processes of each algorithm are carried out under the same circumstances using the similar initial condition and evaluation sets. The results prove that among the studied training tools, Support vector machine (SVM) achieved the best results.
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M. Cost Optimisation for Wheelchair Redesign. 1st International Conference On Cyber Management And Engineering (CyMaEn), 26-28 May [Internet]. 2021. Publisher's VersionAbstract
Requirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don’t meet international standards. However, developing countries are obliged to purchase products from developed countries that don’t necessarily meet all user’s requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M. Cost Optimisation for Wheelchair Redesign. 1st International Conference On Cyber Management And Engineering (CyMaEn), 26-28 May [Internet]. 2021. Publisher's VersionAbstract
Requirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don’t meet international standards. However, developing countries are obliged to purchase products from developed countries that don’t necessarily meet all user’s requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M. Cost Optimisation for Wheelchair Redesign. 1st International Conference On Cyber Management And Engineering (CyMaEn), 26-28 May [Internet]. 2021. Publisher's VersionAbstract
Requirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don’t meet international standards. However, developing countries are obliged to purchase products from developed countries that don’t necessarily meet all user’s requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.
Bellal S-E, Mouss L-H, Sahnoun M’hammed, Messaadia M. Cost Optimisation for Wheelchair Redesign. 1st International Conference On Cyber Management And Engineering (CyMaEn), 26-28 May [Internet]. 2021. Publisher's VersionAbstract
Requirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don’t meet international standards. However, developing countries are obliged to purchase products from developed countries that don’t necessarily meet all user’s requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.

Pages