2021
AKSA K.
Recherche Documentaire et Conception du Mémoire. 2021.
AbstractLe 4ème semestre d’un mastère de recherche est consacré à la réalisation d’un travail de recherche qui sera traduit par une conception et une rédaction d’un mémoire de fin d’études et finalement la préparation d’un exposé oral puis une soutenance.Le mémoire de fin d’études est une étape très importante dans la voie des études universitaires, car sans elle, l’étudiant ne peut pas acquérir la qualité de diplômé.Alors, dans ce petit livre vous pouvez trouver un petit guide sur: - La fa\c con d’organisation de votre mémoire. - La présentation de votre soutenance. - La rédaction d’un travail de recherche. - La préparation d’un poster.Le 4ème semestre d’un mastère de recherche est consacré à la réalisation d’un travail de recherche qui sera traduit par une conception et une rédaction d’un mémoire de fin d’études et finalement la préparation d’un exposé oral puis une soutenance.Le mémoire de fin d’études est une étape très importante dans la voie des études universitaires, car sans elle, l’étudiant ne peut pas acquérir la qualité de diplômé.Alors, dans ce petit livre vous pouvez trouver un petit guide sur: La fa\c con d’organisation de votre mémoire. La présentation de votre soutenance. La rédaction d’un travail de recherche. La préparation d’un poster.
Berghout T, Mouss L-H, Bentrcia T, Benbouzid M.
A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement (2022) [Internet]. 2021;37 (2).
Publisher's VersionAbstractDeep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e., bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validation performed using the PRONOSTIA induction machine bearing degradation datasets clearly proves the capacity and higher performance of the proposed deep learning knowledge transfer-based prognosis approach.
Chouhal O, Mahdaoui R, Mouss L-H.
SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones. International Journal of Internet Manufacturing and Services [Internet]. 2021;8 (1).
Publisher's VersionAbstractComplex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.
Meraghni S, Benaggoune K, Al-Masry Z, Terrissa L, Devalland C, Zerhouni N.
Towards Digital Twins Driven Breast Cancer Detection. Lecture Notes in Networks and Systems [Internet]. 2021;285 :87–99.
Publisher's VersionAbstractDigital twins have transformed the industrial world by changing the development phase of a product or the use of equipment. With the digital twin, the object’s evolution data allows us to anticipate and optimize its performance. Healthcare is in the midst of a digital transition towards personalized, predictive, preventive, and participatory medicine. The digital twin is one of the key tools of this change. In this work, DT is proposed for the diagnosis of breast cancer based on breast skin temperature. Research has focused on thermography as a non-invasive scanning solution for breast cancer diagnosis. However, body temperature is influenced by many factors, such as breast anatomy, physiological functions, blood pressure, etc. The proposed DT updates the bio-heat model’s temperature using the data collected by temperature sensors and complementary data from smart devices. Consequently, the proposed DT is personalized using the collected data to reflect the person’s behavior with whom it is connected.
AKSA K, Bouhafna K, BELAYATI S, DJEGHAR D.
Vers une Nouvelle Révolution Industrielle : Industrie 4.0. Revue Méditerranéenne des Télécommunications [Internet]. 2021;11 (1).
Publisher's VersionAbstractLa quatrième révolution industrielle (nommée aussi l’Internet Industriel des Objets) dépend totalement sur la numérisation à travers l’Internet des objets et les réseaux virtuels. Cette révolution qui évolue à un rythme exponentiel, et non plus linéaire, va permettre la création d’usines, d’industries et de processus plus intelligents qui vont ensuite se traduire par une amélioration de la flexibilité, de la productivité et une meilleure utilisation des ressources matérielles et humaines. Cet article est consacré à introduire cette nouvelle révolution industrielle (industrie4.0), les technologies majeurs participant à son apparition, leur bénéfices attendus ainsi que leurs enjeux à prendre en considération.
Rahem A, Yahiaoui D, Lahbari N, Bouzid T.
Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2).
Publisher's VersionAbstractThe infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.
Mansouri T, Boufarh R, Saadi D.
Effects of underground circular void on strip footing laid on the edge of a cohesionless slope under eccentric loads. Soils and Rocks [Internet]. 2021;44 (1).
Publisher's VersionAbstractOwing to the comeback of small-scale models, this paper presents results of an experimental study based on the effect of underground circular voids on strip footing placed on the edge of a cohesionless slope and subjected to eccentric loads. The bearing capacity-settlement relationship of footing on the slope and impact of diverse variables are expressed using dimensionless parameters such as the top vertical distance of the void from the base of footing, horizontal space linking the void-footing centre, and load eccentricity. The results verified that the stability of strip footing is influenced by the underground void, as well as the critical depth between the soil and top layer of the void. The critical horizontal distance between the void and the centre was also affected by the underground void. Furthermore, the results also verified that the influence of the void appeared insignificant when it was positioned at a depth or eccentricity equal to twice the width of footing.
Benaicha AC, Fourar A, Mansouri T, Massouh F.
Mechanical Behavior of the Extraction Mud Dam for Use in the Manufacture of CEB. Civil Engineering Journal [Internet]. 2021;7 (10).
Publisher's VersionAbstractThe aim of this work is to study the mechanical behavior of the sediments extracted from the Koudiet Meddaouar, Timgad dam (Algeria), for a possible valorization in the field for building works in order to minimize this phenomenon which is currently a concern for the operators and the persons in charge of the mobilization of the water resources. This siltation therefore severely limits its storage capacity and consequently it’s operating life. The extraction of the sediments accumulated in the dam’s reservoir is therefore imperative, on the pain of seeing it perish in the medium term. These sediments are, however, of great geotechnical and mechanical value. The results of the tests conducted in the laboratory have enabled us to identify the different sediments from a physical and geotechnical point of view In front of the difficulties noted in the control of the silting up of the dams in Algeria, a very important quantity of silt being deposited annually in the dams. In order to achieve our objective, different mixtures of silt with or without lime treatment, cement glass fibers and powdered fibers were studied for the possible manufacture of Compressed Earth Bricks (CEB). The results obtained show that some of the mixtures present very interesting results in the different tests (compression and bending), verifying the conditions of the standards in force and thus allowing their use in the field of the manufacture of building materials.
Guettafi N, Yahiaoui D, Abbeche K, Bouzid T.
Performance Assessment of Interaction Soil Pile Structure Using the Fragility Methodology. Civil Engineering Journal [Internet]. 2021;7 (2).
Publisher's VersionAbstractThis study aimed to investigate whether the seismic fragility and performance of interaction soil-pile-structure (ISPS) were affected by different parameters: axial load, a section of the pile, and the longitudinal steel ratio of the pile were implanted in different type of sand (loose, medium, dense). In order to better understand the ISPS phenomena, a series of nonlinear static analysis have been conducted for two different cases, namely: (i) fixed system and (ii) ISPS system, to get the curves of the capacity of every parameter for developing the fragility curve. After a comparison of the numerical results of pushover analysis and fragility curves, the results indicate that these parameters are significantly influenced on lateral capacity, ductility and seismic fragility on the ISPS. The increasing in the axial load exhibit high probabilities of exceeding the damage state. The increase in pile section and longitudinal steel ratio, the effect of probability damage (low and high) are not only related to the propriety geometrically, but also related to the values of ductility and lateral capacity of the system.
Benali R, Mellas M, Baheddi M, Mansouri T, Boufarh R.
Physico-mechanical Behaviors and Durability of Heated Fiber Concrete. Civil Engineering Journal [Internet]. 2021;7 (9).
Publisher's VersionAbstractThe objective of the present manuscript is to describe the impact of polypropylene fibers on the behavior of heated concrete subjected to heating and cooling cycles at temperatures of 200, 450 and 600 °C respectively for six hours, through a series of experimental tests on mass loss, water absorption, porosity, compressive and tensile strength. For this purpose, mixes were prepared with a water/cement ratio with the incorporation of polypropylene fibers with a rate varying from 0.5 to 1.5%. These fibers were added in order to improve the thermal stability and to prevent the concrete from splitting. The results show that a considerable loss of strength was noticed for all tested specimens. The relative compressive strengths of the concretes containing polypropylene fibers were higher than those of the concretes without fibers. Also, a greater loss of mass of the polypropylene fibers compared to those without fibers was noticed when increasing the temperature. The flexural tensile strength of the concrete was more sensitive to elevated temperatures than the compressive strength and a rapid increase in porosity was observed for the fiber-reinforced concrete compared to the reference concrete. Furthermore, water absorption by the fibers is proportional to the fiber content of the concrete.
Hamzaoui L, Bouzid T.
The Proposition of an EI Equation of Square and L–Shaped Slender Reinforced Concrete Columns under Combined Loading. Engineering, Technology & Applied Science Research [Internet]. 2021;11 (3) :7100-7106.
Publisher's VersionAbstractThe stability and strength of slender Reinforced Concrete (RC) columns depend directly on the flexural stiffness EI, which is a major parameter in strain calculations including those with bending and axial load. Due to the non-linearity of the stress-strain curve of concrete, the effective bending stiffness EI always remains variable. Numerical simulations were performed for square and L-shaped reinforced concrete sections of slender columns subjected to an eccentric axial force to estimate the variation of El resulting from the actual behavior of the column, based on the moment-curvature relationship. Seventy thousand (70000) hypothetical slender columns, each with a different combination of variables, were used to investigate the main variables that affect the EI of RC slender columns. Using linear regression analysis, a new simple and linear expression of EI was developed. Slenderness, axial load level, and concrete strength have been identified as the most important factors affecting effective stiffness. Finally, the comparison between the results of the new equation and the methods proposed by ACI-318 and Euro Code-2 was carried out in connection with the experimental results of the literature. A good agreement of the results was found.
SAADI M, Yahiaoui D, Lahbari N, Bouzid T.
Seismic Fragility Curves for Performance of Semi-rigid Connections of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (7).
Publisher's VersionAbstractA steel frame with a semi-rigid connection is one of the most widely used structural systems in modern construction. These systems are cheap to make, require less time to construct and offer the highest quality and reliable construction quality without the need for highly skilled workers. However, these systems show greater natural periods compared to their perfectly rigid frame counterparts. This causes the building to attract low loads during earthquakes. In this research study, the seismic performance of steel frames with semi-rigid joints is evaluated. Three connections with capacities of 50, 70 and 100% of the beam’s plastic moment are studied and examined. The seismic performance of these frames is determined by a non-linear static pushover analysis and an incremental dynamic analysis leading finally to the fragility curves which are developed. The results show that a decrease in the connection capacity increases the probability of reaching or exceeding a particular damage limit state in the frames is found.
BENDJEDDOU YACINE, Abdessemed R, MERABET ELKHEIR.
COMMANDE A FLUX VIRTUEL ORIENTE DE LA GENERATRICE ASYNCHRONE A CAGE DOUBLE ÉTOILE. Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique. 2021 :2021.
AbstractCet article est consacré à l’étude des performances de la génératrice asynchrone à cage double étoile (GASDE) en site isolé. Le système de commande est composé d’une GASDE raccordé à un bus continu et une charge en sortie de deux redresseurs à commande MLI. Une étude comparative entre la technique de commande conventionnelle et la commande adaptée basée sur l’introduction de la SVM-PI-flou et un nouvel estimateur de flux (flux virtuel statorique) afin d’améliorer la qualité d’énergie et d’atténuer les harmoniques du courant.
Boumaaraf F, BOUTABBA T, Sebti B.
Dual direct torque control of doubly fed induction machine using second order sliding mode control. Journal of Measurements in Engineering [Internet]. 2021;9 (1) :1-12.
Publisher's VersionAbstractIn this paper a dual direct torque control (DDTC) strategy with second-order sliding mode control (SOSMC) controller of the doubly fed Induction motor (DFIM) is presented in order to overcome some drawback such as ripples in torque, flux and to improve dual direct torque control (DDTC) performance toward the electrical parameters variations. This control strategy used in the doubly fed induction machine supplied, coupled by two voltage source inverters in rotor and stator sides witches are linked to two switching tables in order to determined the rotor and stator flux vector control. This controller based on super-twisting algorithm (STA). Comparative results between a classical controller (PI) and the proposed controller can prove the very satisfactory performance and robustness of this new controller.
Boumaaraf F, BOUTABBA T, Sebti B.
Fuzzy super twisting algorithm dual direct torque control of doubly fed induction machine. International Journal of Electrical and Computer Engineering (IJECE) [Internet]. 2021;11 (5) :3782 3790.
Publisher's VersionAbstractThis paper proposes the fundamental aspects of hybrid nonlinear control which is composed of the super twisting algorithm (STA) based second order sliding mode control applying fuzzy logic method (FSOSMC), with pertinent simulation results for a doubly fed induction machine (DFIM) drive. To minimize chattering effect phenomenon due to Signum function employed in sliding mode algorithm, a new method is proposed. This technique consists in replacing the signum function by fuzzy switching function in the SOSMC to minimize flux and torque ripples. This FSOSMC is associated to the double direct torque control DDTC of the doubly fed induction machine (DFIM) by combining the advantages of fuzzy logic (FL) and the advantages of super-twisting sliding mode. The FSOSMC-DDTC strategy is compared with a PI-DDTC and SOSMC-DDTC. Simulation results demonstrate good efficiency and excellent robustness of the hybrid nonlinear controller.
ZARROUKI M-B-E, Benaggoune S, Abdessemed R.
STRATÉGIE DE CONTRÔLE NON LINÉAIRE OPTIMISÉE POUR LE GÉNÉRATEUR SYNCHRONE À AIMANT PERMANENT (GSAP) DANS LE SYSTÈME DE CONVERSION DE L'ÉNERGIE ÉOLIENNE (SCEE). U.P.B. Sci. Bull., Series C [Internet]. 2021;83 (1).
Publisher's VersionAbstractL’article décrit la conception et la mise en øe}uvre en temps réel d’une commande non linéaire appliquée à un système de conversion de l’énergie éolienne (SCEE). La commande backstepping a été mise en øe}uvre pour améliorer les performances du système de conversion éolienne basé sur un générateur synchrone à aimants permanents (PMSG) connecté au réseau. Deux convertisseurs statiques assurent la connexion au réseau et sont contrôlés par la modulation de largeur d’impulsion (MLI). L’algorithme de contrôle proposé assure un contrôle de vitesse adéquat pour extraire la puissance maximale. Une description détaillée des lois de contrôle du backstepping basées sur la technique de stabilité de Lyapunov a été exposée. Les résultats obtenus par l’application de cette approche ont clairement répondu aux exigences de robustesse et de suivi des références même dans des conditions de vent fluctuants, et ont confirmé l’efficacité d’un tel contrôle dans les modes de fonctionnement statique et dynamique.
BENDJEDDOU YACINE, Deboucha A, Bentouhami L, MERABET ELKHEIR, Abdessemed R.
Super twisting sliding mode approach applied to voltage orientated control of a stand-alone induction generator. Protection and Control of Modern Power Systems [Internet]. 2021;6 :18.
Publisher's VersionAbstractTo enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.
Mekhloufi R, Boussaha A, Benbouta R, Baroura L.
Anisotropic and Isotropic Elasticity Applied for the Study of Elastic Fields Generated by Interfacial Dislocations in a Heterostructure of InAs/(001)GaAs Semiconductors. Journal of Solid Mechanics [Internet]. 2021;13 (4) :503-512.
Publisher's VersionAbstractThis work is a study of the elastic fields’ effect (stresses and displacements) caused by dislocations networks at a heterostructure interface of a InAs / GaAs semiconductors thin system in the cases of isotropic and anisotropic elasticity. The numerical study of this type of heterostructure aims to predict the behavior of the interface with respect to these elastic fields satisfying the boundary conditions. The method used is based on a development in Fourier series. The deformation near the dislocation is greater than the other locations far from the dislocation.
Alkebsi EAA, Ameddah H, OUTTAS T, Almutawakel A.
Design of graded lattice structures in turbine blades using topology optimization. International Journal of Computer Integrated Manufacturing [Internet]. 2021;34 (4).
Publisher's VersionAbstractDesigning and manufacturing lattice structures with Topology Optimization (TO) and Additive Manufacturing (AM) techniques is a novel method to create light-weight components with promising potential and high design flexibility. This paper proposes a new design of lightweight-graded lattice structures to replace the internal solid volume of the turbine blade to increase its endurance of high thermal stresses effects. The microstructure design of unit cells in a 3D framework is conducted by using the lattice structure topology optimization (LSTO) technique. The role of the LSTO is to find an optimal density distribution of lattice structures in the design space under specific stress constraints and fill the inner solid part of the blade with graded lattice structures. The derived implicit surfaces modelling is used from a triply periodic minimal surfaces (TPMS) to optimize the mechanical performances of lattice structures. Numerical results show the validity of the proposed method. The effectiveness and robustness of the constructed models are analysed by using finite element analysis. The simulation results show that the graded lattice structures in the improved designs have better efficiency in terms of lightweight (33.41–40.32%), stress (25.52–48.55%) and deformation (7.35–19.58%) compared to the initial design.
Khalid F, Manaa R, Saad S, Ameddah H.
A Study of the Thermo-Mechanical Behavior of a Gas Turbine Blade in Composite Materials Reinforced with Mast. Revue des Composites et des Matériaux Avancés [Internet]. 2021;31 (2) :101-108.
Publisher's VersionAbstractThe turbine blades are subjected to high operating temperatures and high centrifugal tensile stress due to rotational speeds. The maximum temperature at the inlet of the turbine is currently limited by the resistance of the materials used for the blades. The present paper is focused on the thermo-mechanical behavior of the blade in composite materials with reinforced mast under two different types of loading. The material studied in this work is a composite material, the selected matrix is a technical ceramic which is alumina (aluminum oxide Al2O3) and the reinforcement is carried out by short fibers of high modulus carbon to optimize a percentage of 40% carbon and 60% of ceramics. The simulation was performed numerically by Ansys (Workbench 16.0) software. The comparative analysis was conducted to determine displacements, strains and Von Mises stress of composite material and then compared to other materials such as Titanium Alloy, Stainless Steel Alloy, and Aluminum 2024 Alloy. The results were compared in order to select the material with the best performance in terms of rigidity under thermomechanical stresses. While comparing these materials, it is found that composite material is better suited for high temperature applications. On evaluating the graphs drawn for, strains and displacements, the blade in composite materials reinforced with mast is considered as optimum.