Publications by Type: Journal Article

2021
Meziani A. Paradigmes évaluatifs de la compétence interculturelle dans la recherche : Enjeux conceptuels et méthodologiques. Revue algérienne des lettres [Internet]. 2021;5 (2) :471-484. Publisher's VersionAbstract
Dans cet article, l’objectif est de fournir aux chercheurs intéressés par la compétence interculturelle des pistes de réflexion sur son évaluation. Il s’agit de porter un regard analytique sur ce construit multidimensionnel tel qu’il est approché dans les différentes recherches. La clarification du concept nous permettra de dresser les modalités de son évaluation, leurs avantages ainsi que leurs limites tout en tenant compte des considérations méthodologiques garantissant leur validité et fiabilité selon le contexte de la recherche. Notre but est de dépasser une vision réductrice du concept altérant son opérationnalisation et de proposer des alternatives que le chercheur pourrait adopter.
Khadraoui E, Khadraoui F-Z. Pédagogie Du Projet Appliquée à L’enseignement Du Fle : Pour Le Développement D’une Compétence De Compréhension Et De Production De L’écrit. social and human sciences review [Internet]. 2021;22 (1) :623-636. Publisher's VersionAbstract
La présente contribution a pour objectif de déterminer la place de l’écrit par rapport à l’oral dans le système éducatif algérien ainsi que de rendre compte de la manière dont la pédagogie du projet permet le développement des compétences de compréhension et de production de l’écrit. Pour ce faire, nous avons pris les programmes du cycle moyen du système éducatif algérien comme objet d’étude. Dans un premier temps, nous avons analysé les programmes, manuels scolaires, et guides des professeurs, dans le but de déterminer l’importance accordée par les instances éducatives aux deux compétences (écrit, oral). Nous avons expliqué, dans un second temps, à travers la présentation d’un exemple de projet comment la pédagogie du projet permet-elle un meilleur développement de la compétence de l’écrit.
Lebbal S. Regard Kaléidoscopique Sur La Traduction Des Instances Narratives. Revue In Translation [Internet]. 2021;8 (1) :500-508. Publisher's VersionAbstract
Le présent article tend à spéculer sur l’importance des instances narratives scellant le discours littéraire dans l’entreprise traductionnelle. Sa nécessité tient dans la considération que les traducteurs sont invités à cerner l’exhaustivité et la profondeur du travail littéraire pour une appréhension optimale de leur exercice. Pour ce faire, nous proposons de mettre en exergue la triade narratologique faisant office de soubassement théorique (modes/perspectives/niveaux) en la mettant en corrélation avec l’øe}uvre qui nous servira de corpus à savoir « les ailes brisées » de Gibran Khalil Gibran traduite de l’arabe par Thierry Gillyboeuf afin de rendre compte de la matérialisation et la conformité de ces mêmes instances dans le texte cible.
Meziani A. Une autre manière de conscientiser à l’interculturel dans l’apprentissage du français en Algérie. JOURNAL OF PHILOLOGY AND INTERCULTURAL COMMUNICATION REVUE DE PHILOLOGIE ET DE COMMUNICATION INTERCULTURELLE [Internet]. 2021;V (1). Publisher's VersionAbstract
This article is a reflection on the interculturality/contextualization duo in the relationship between the Algerian education system with the French language. The first step is to study the degree of conformity between the intercultural/contextual aims presented in official discourses and texts, and their transposition into French textbooks. Secondly, we will identify suggestions likely to enhance contextualization and interculturality through the texts and comprehension activities presented in the textbooks. Our aim is to provide the teachers with suggestions/tools to raise their learners’ intercultural awareness and enable them to be intercultural mediators.
Berghout T, Benbouzid M, Muyeen S-M, Bentrcia T, Mouss L-H. Auto-NAHL: A Neural Network Approach for Condition-Based Maintenance of Complex Industrial Systems. IEEE Access [Internet]. 2021;9. Publisher's VersionAbstract
Nowadays, machine learning has emerged as a promising alternative for condition monitoring of industrial processes, making it indispensable for maintenance planning. Such a learning model is able to assess health states in real time provided that both training and testing samples are complete and have the same probability distribution. However, it is rare and difficult in practical applications to meet these requirements due to the continuous change in working conditions. Besides, conventional hyperparameters tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health states. Within the designed network, it is worthy to mention that the novelty of the implemented neural architecture is attributed to the new multiple feature mappings of the inputs, where such configuration allows the hidden layer to learn multiple representations from several random linear mappings and produce a single final efficient representation. Hyperparameters tuning including the network architecture, is fully automated by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated on a complex industrial plant as well as various classification problems. Based on the obtained results, it can be claimed that our proposal yields better response to new hidden representations by obtaining a higher approximation compared to some previous works.
Haoues M, Dahane M, Mouss N-K. Capacity Planning With Outsourcing Opportunities Under Reliability And Maintenance Constraints. Status. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract
This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer’s company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.
Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 (2) :131-145. Publisher's VersionAbstract
A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs
Berghout T, Mouss L-H, Bentrcia T, Elbouchikhi E, Benbouzid M. A deep supervised learning approach for condition-based maintenance of naval propulsion systems. Ocean Engineering [Internet]. 2021;221 (1). Publisher's VersionAbstract
In the last years, predictive maintenance has gained a central position in condition-based maintenance tasks planning. Machine learning approaches have been very successful in simplifying the construction of prognostic models for health assessment based on available historical labeled data issued from similar systems or specific physical models. However, if the collected samples suffer from lack of labels (small labeled dataset or not enough samples), the process of generalization of the learning model on the dataset as well as on the newly arrived samples (application) can be very difficult. In an attempt to overcome such drawbacks, a new deep supervised learning approach is introduced in this paper. The proposed approach aims at extracting and learning important patterns even from a small amount of data in order to produce more general health estimator. The algorithm is trained online based on local receptive field theories of extreme learning machines using data issued from a propulsion system simulator. Compared to extreme learning machine variants, the new algorithm shows a higher level of accuracy in terms of approximation and generalization under several training paradigms.
Seddik M-T, KADRI O, Bouarouguene C, Brahimi H. Detection of Flooding Attack on OBS Network Using Ant Colony Optimization and Machine Learning. Computación y Sistemas [Internet]. 2021;25 (2). Publisher's VersionAbstract
Optical burst switching (OBS) has become one of the best and widely used optical networking techniques. It offers more efficient bandwidth usage than optical packet switching (OPS) and optical circuit switching (OCS).However, it undergoes more attacks than other techniques and the Classical security approach cannot solve its security problem. Therefore, a new security approach based on machine learning and cloud computing is proposed in this article. We used the Google Colab platform to apply Support Vector Machine (SVM) and Extreme Learning Machine (ELM)to Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS) Network Data Set.
AKSA K, Aitouche S, Bentoumi H, Sersa I. Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories. Wireless Personal Communications [Internet]. 2021;119 :pages1469–1497. Publisher's VersionAbstract
Industry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.
Sonia B, Zermane H, Mouss L-H, Bencherif F. Development of an Industrial Application with Neuro-Fuzzy Systems. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS [Internet]. 2021;8. Publisher's VersionAbstract
In this paper, our objective is dedicated to the detection of a deterioration in the estimated operating time by giving preventive action before a failure, and the classification of breakdowns after failure by giving the action of the diagnosis and / or maintenance. For this reason, we propose a new Neuro-fuzzy assistance prognosis system based on pattern recognition called "NFPROG" (Neuro Fuzzy Prognosis). NFPROG is an interactive simulation software, developed within the Laboratory of Automation and Production (LAP) -University of Batna, Algeria. It is a four-layer fuzzy preceptor whose architecture is based on Elman neural networks. This system is applied to the cement manufacturing process (cooking process) to the cement manufacturing company of Ain-Touta-Batna, Algeria. And since this company has an installation and configuration S7-400 of Siemens PLC PCS7was chosen as a programming language platform for our system.
Benfriha A-I, Triqui-Sari L, Bougloula A-E, Bennekrouf M. Dynamic planning design of three level distribution network with horizontal and vertical exchange. Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central ware. 2021.Abstract
 Inventory management in distribution networks remains a challenging task due to the demand nature and the limited storage capacity. In this work, we study a three-level, a multi-product and a multi-period distribution network consisting of a central warehouse, three distribution centres and six wholesalers. Each of them faces a random demand. In order to optimise the inventory management in the distribution network, we first propose to make a horizontal cooperation between actors of the same level in the form of product exchange; then we propose a second approach based on vertical-horizontal cooperation. Both approaches are modelled as a MIP model and solved using the CPLEX solver. The objective of this study is to analyse the performance in terms of costs, quantities in stock and customer satisfaction.
Gougam F, Chemseddine R, Benazzouz D, Zerhouni N, Benaggoune K. Fault prognostics of rolling element bearing based on feature extraction and supervised machine learning: Application to shaft wind turbine gearbox using vibration signal. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [Internet]. 2021;235 (20). Publisher's VersionAbstract
Renewable energies offer new solutions to an ever-increasing energy demand. Wind energy is one of the main sources of electricity production, which uses winds to be converted to electrical energy with lower cost and environment saving. The major failures of a wind turbine occur in the bearings of high-speed shafts. This paper proposes the use of optimized machine learning to predict the Remaining Useful Life (RUL) of bearing based on vibration data and features extraction. Significant features are extracted from filtered band-pass of the squared raw signal where the health indicators are automatically selected using relief technique. Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) by Partical Swarm Optimization (PSO) is used to model the non linear degradation of the extracted indicators. The proposed approach is applied on experimental setup of wind turbine where the results show its effectiveness for RUL estimation.
Bensakhria M, Abdelhamid S. A Hybrid Methodology based on heuristic algorithms for a production distribution system with routing decisions. . BizInfo (Blace) Journal of Economics, Management and Informatics [Internet]. 2021;12 (2) :1-22. Publisher's VersionAbstract
In this paper, we address the integration of a two-level supply chain with multiple items. This two-level production-distribution system features a capacitated production facility supplying several retailers located in the same region. If production does occur, this process incurs a fixed setup cost and unit production costs. Besides, deliveries are made from the plant to the retailers by a limited number of capacitated vehicles, routing costs incurred. This work aims to implement a minimization solution that reduces the total costs in both the production facility and retailers. The methodology adopted based on a hybrid heuristic, greedy and genetic algorithm uses strong formulation to provide a suitable solution of a guaranteed quality that is as good or better than those provided by the MIP optimizer. The results demonstrate that the proposed heuristics are effective and performs impressively in terms of computational efficiency and solution quality.
Benayache A, Bilami A, Benaggoune K, Mouss L-H. Industrial IoT middleware using a multi-agent system for consistency-based diagnostic in cement factory. International Journal of Autonomous and Adaptive Communications Systems [Internet]. 2021;14 (3). Publisher's VersionAbstract
With the evolution of the internet of things (IoT), and due to its significant need in the industry, Industrial IoT (IIoT) becomes the suitable naming for this accompaniment. IIoT changed the view of the industry intelligently and over the internet. This overlapping of IoT and industry requires special treatment when systems deal with heterogeneous devices in a distributed environment and complex tasks. In this paper, we propose a middleware solution based on multi-agents system (MAS) to handle the distributed control of complex systems autonomously in an industrial environment. The proposed middleware enables machine-to-machine (M2M) communications among the system’s components. In this work, we also addressed the distributed diagnostic for real industrial system using MAS with a new suitable communication strategy to support the heterogeneity and interoperability issued in IIoT and assure real-time monitoring and control. Finally, we present a qualitative evaluation of our solution on real case study (cement factory).
Benbouzid M, Berghout T, Sarma N, Djurović S, Wu Y, Ma X. Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Energies [Internet]. 2021;14 (18). Publisher's VersionAbstract
Modern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms.
Berghout T, Benbouzid M, Mouss H-L. Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies [Internet]. 2021;14 (8). Publisher's VersionAbstract

Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.

Berghout T, Benbouzid M, Bentrcia T, Ma X, sa Djurović S\v, Mouss L-H. Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects. Energies [Internet]. 2021;14 (19). Publisher's VersionAbstract
To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.
Derdour K, Mouss L-H, Bensaadi R. Multiple Features Extraction and Classifiers Combination Based Handwriting Digit Recognition. International Journal on Electrical Engineering and Informatics [Internet]. 2021;13 (1). Publisher's VersionAbstract
In this paper, we present a system for handwriting digit recognition using different invariant features extraction and multiple classifiers. In the feature extraction we use four types: cavities, Zernike moments, Hu moments, Histogram of Gradient (HOG). Firstly, the features are used independently by five classifiers: K-nearest neighbor (KNN), Support Vector Machines (SVM) one versus one, SVM one versus all, Decision Tree, MLP. Then to achieve the best possible classification performance in terms of recognition rate, three methods of classifiers Combination rule employed: majority vote, Borda count and maximum rule. Experiments are performed on the well-known MNIST database of handwritten digits. The results demonstrated that the combination of KNN using HOG features with SVMOVA using Zernike moments by Borda count rule have considered to be good based on a geometric transformation invariance.
AKSA K. Principles of Biology in Service of Technology: DNA Computing. Algerian Journal of Environmental Science and Technology (ALJEST) [Internet]. 2021;7 (20). Publisher's VersionAbstract
 As commonly known that living beings cannot survive without natural sources available on earth, technology is no exception; it cannot develop without the inspiring help given by the same nature. The field of biology has extensively participated in the computing field through the "code of life" DNA (Deoxyribo Nucleic Acid) since it was discovered by Adelman in the past century. This combination gave birth to DNA Computing, which is a very interesting new aspect of biochemistry. It works massively parallel with high energy efficiency, and requiring almost no space. The field of molecular computing is still new and as the field progresses from concepts to engineering, researchers will address these important issues.  By the use of encoding data into DNA strands, many NP-complete problems have been solved and many new efficient techniques have been proposed in cryptography field. The aim of this paper is to give an overview of bio-inspired system and to summarize the great role of DNA molecule in servicing of the technology field.

Pages