2022
Gaagai A, Aouissi HA, Krauklis AE, Burlakovs J, Athamena A, Zekker I, Boudoukha A, Benaabidate L, Chenchouni H.
Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. WaterWater [Internet]. 2022;14 (5) :767.
Publisher's VersionAbstract
The risk related to embankment dam breaches needs to be evaluated in order to prepare emergency action plans. The physical and hydrodynamic parameters of the flood wave generated from the dam failure event correspond to various breach parameters, such as width, slope, and formation time. This study aimed to simulate the dam breach failure scenario of the Yabous dam (northeast Algeria) and analyze its influence on the related areas (urban and natural environments) downstream of the dam. The simulation was completed using the sensitivity analysis method to assess the impact of breach parameters and flooding on the dam break scenario. The flood wave propagation associated with the dam break was simulated using the one-dimensional HEC-RAS hydraulic model. This study applied a sensitivity analysis of three breach parameters (slope, width, and formation time) on five sites selected downstream of the embankment dam. The simulation showed that the maximum flow of the flood wave recorded at the level of the breach was 8768 m3/s, which gradually attenuated along the river course to reach 1972.7 m3/s at about 8.5 km downstream the dam. This study established the map of flood risk areas that illustrated zones threatened by the flooding wave triggered by the dam failure due to extreme rainfall events. The sensitivity analysis showed that flood wave flow, height, and width revealed positive and similar changes for the increases in adjustments (±25% and ±50%) of breach width and slope in the five sites. However, flood wave parameters of breach formation time showed significant trends that changed in the opposite direction compared to breach slope and width. Meanwhile, the adjustments (±25% and ±50%) of the flood hydrograph did not significantly influence the flood parameters downstream of the dam. In the present study, the HEC-RAS 1-D modeling demonstrated effectiveness in simulating the propagation of flood waves downstream of the dam in the event of dam failure and highlighted the impact of the breach parameters and the flood hydrographical pattern on flood wave parameters.
Khanfouf O, Fourar A, Massouh F, Zeroual A, Chiremsel R.
Modeling unsteady turbulent flows around immersed obstacles in a channel with complex geometry. Modeling Earth Systems and Environment [Internet]. 2022 :1-20.
Publisher's VersionAbstract
Turbulent flows are characterized by the presence of "scales of fluctuations", or "structures" of varying magnitudes, the effects in which the mixing, transfer and dissipation of energy are preponderant. Most importantly, dissipation determines the depth profile of the flow. This contribution aims to implement a model able to predict unsteady turbulent flows generated by the presence of obstacles in a channel with complex geometry and to report, where the complexity of the phenomena are observed, such as: the separation of the boundary layer, the succession of vortices, local heat transfers, and the recirculation zones in the wake of obstacles and the oscillatory regime of the hydraulic jump for which this research is of exclusive interest. The current work therefore, presents the numerical simulation in unsteady turbulent regime based on the resolution of balance equations, using the RANS (Reynolds-Averaged Navier–Stokes) approach with an RNG k−ε closure model. To solve the incompressible Navier–Stokes equations governing these flows, we appealed to the motivated finite volume method, and its ability to process complex geometries. The simulation software FLUENT we used is based on the finite volume method. It allows to explore, the velocity and pressure fields in the digital channel of the studied flows.
Khanfouf O, Fourar A, Massouh F, Zeroual A, Chiremsel R.
Modeling unsteady turbulent flows around immersed obstacles in a channel with complex geometry. Modeling Earth Systems and Environment [Internet]. 2022 :1-20.
Publisher's VersionAbstract
Turbulent flows are characterized by the presence of "scales of fluctuations", or "structures" of varying magnitudes, the effects in which the mixing, transfer and dissipation of energy are preponderant. Most importantly, dissipation determines the depth profile of the flow. This contribution aims to implement a model able to predict unsteady turbulent flows generated by the presence of obstacles in a channel with complex geometry and to report, where the complexity of the phenomena are observed, such as: the separation of the boundary layer, the succession of vortices, local heat transfers, and the recirculation zones in the wake of obstacles and the oscillatory regime of the hydraulic jump for which this research is of exclusive interest. The current work therefore, presents the numerical simulation in unsteady turbulent regime based on the resolution of balance equations, using the RANS (Reynolds-Averaged Navier–Stokes) approach with an RNG k−ε closure model. To solve the incompressible Navier–Stokes equations governing these flows, we appealed to the motivated finite volume method, and its ability to process complex geometries. The simulation software FLUENT we used is based on the finite volume method. It allows to explore, the velocity and pressure fields in the digital channel of the studied flows.
Khanfouf O, Fourar A, Massouh F, Zeroual A, Chiremsel R.
Modeling unsteady turbulent flows around immersed obstacles in a channel with complex geometry. Modeling Earth Systems and Environment [Internet]. 2022 :1-20.
Publisher's VersionAbstract
Turbulent flows are characterized by the presence of "scales of fluctuations", or "structures" of varying magnitudes, the effects in which the mixing, transfer and dissipation of energy are preponderant. Most importantly, dissipation determines the depth profile of the flow. This contribution aims to implement a model able to predict unsteady turbulent flows generated by the presence of obstacles in a channel with complex geometry and to report, where the complexity of the phenomena are observed, such as: the separation of the boundary layer, the succession of vortices, local heat transfers, and the recirculation zones in the wake of obstacles and the oscillatory regime of the hydraulic jump for which this research is of exclusive interest. The current work therefore, presents the numerical simulation in unsteady turbulent regime based on the resolution of balance equations, using the RANS (Reynolds-Averaged Navier–Stokes) approach with an RNG k−ε closure model. To solve the incompressible Navier–Stokes equations governing these flows, we appealed to the motivated finite volume method, and its ability to process complex geometries. The simulation software FLUENT we used is based on the finite volume method. It allows to explore, the velocity and pressure fields in the digital channel of the studied flows.
Khanfouf O, Fourar A, Massouh F, Zeroual A, Chiremsel R.
Modeling unsteady turbulent flows around immersed obstacles in a channel with complex geometry. Modeling Earth Systems and Environment [Internet]. 2022 :1-20.
Publisher's VersionAbstract
Turbulent flows are characterized by the presence of "scales of fluctuations", or "structures" of varying magnitudes, the effects in which the mixing, transfer and dissipation of energy are preponderant. Most importantly, dissipation determines the depth profile of the flow. This contribution aims to implement a model able to predict unsteady turbulent flows generated by the presence of obstacles in a channel with complex geometry and to report, where the complexity of the phenomena are observed, such as: the separation of the boundary layer, the succession of vortices, local heat transfers, and the recirculation zones in the wake of obstacles and the oscillatory regime of the hydraulic jump for which this research is of exclusive interest. The current work therefore, presents the numerical simulation in unsteady turbulent regime based on the resolution of balance equations, using the RANS (Reynolds-Averaged Navier–Stokes) approach with an RNG k−ε closure model. To solve the incompressible Navier–Stokes equations governing these flows, we appealed to the motivated finite volume method, and its ability to process complex geometries. The simulation software FLUENT we used is based on the finite volume method. It allows to explore, the velocity and pressure fields in the digital channel of the studied flows.
Khanfouf O, Fourar A, Massouh F, Zeroual A, Chiremsel R.
Modeling unsteady turbulent flows around immersed obstacles in a channel with complex geometry. Modeling Earth Systems and Environment [Internet]. 2022 :1-20.
Publisher's VersionAbstract
Turbulent flows are characterized by the presence of "scales of fluctuations", or "structures" of varying magnitudes, the effects in which the mixing, transfer and dissipation of energy are preponderant. Most importantly, dissipation determines the depth profile of the flow. This contribution aims to implement a model able to predict unsteady turbulent flows generated by the presence of obstacles in a channel with complex geometry and to report, where the complexity of the phenomena are observed, such as: the separation of the boundary layer, the succession of vortices, local heat transfers, and the recirculation zones in the wake of obstacles and the oscillatory regime of the hydraulic jump for which this research is of exclusive interest. The current work therefore, presents the numerical simulation in unsteady turbulent regime based on the resolution of balance equations, using the RANS (Reynolds-Averaged Navier–Stokes) approach with an RNG k−ε closure model. To solve the incompressible Navier–Stokes equations governing these flows, we appealed to the motivated finite volume method, and its ability to process complex geometries. The simulation software FLUENT we used is based on the finite volume method. It allows to explore, the velocity and pressure fields in the digital channel of the studied flows.
Belkacem Y, Drid S, Makouf A, CHRIFI-ALAOUI L.
Multi-agent energy management and fault tolerant control of the micro-grid powered with doubly fed induction generator wind farm. International Journal of System Assurance Engineering and Management [Internet]. 2022;13 :267-277.
Publisher's VersionAbstract
This paper deals with multi-agent energy management and fault tolerant control of the micro-grid powered by wind farm based on two doubly fed induction generators. The stator flux orientation has used to eliminate the active and reactive power coupling. The proposed control scheme is based on two cascades closed loops. The inner controllers concern the rotor currents. The outer controllers have a parallel configuration with the stator voltage or the stator power control. Switching between these two controllers is realized by the synchronization mechanism. All controllers are designed with Lyapunov approach associated with sliding-mode control, this solution shows good robustness against parameter variations, measurement errors and faults. The global asymptotic stability of the overall system is proven. After that, a Multi-agent energy management was proposed and tested in order to satisfy some objectives and overcome some constraints. The advantages of the wind energy integration associated with multi-agent energy management are: production cost minimization, reduction of the carbon emissions, increasing the energy autonomy and he robustness against weather conditions and faults that may occur during operation. The results confirm the effectiveness of the proposed control.
Belkacem Y, Drid S, Makouf A, CHRIFI-ALAOUI L.
Multi-agent energy management and fault tolerant control of the micro-grid powered with doubly fed induction generator wind farm. International Journal of System Assurance Engineering and Management [Internet]. 2022;13 :267-277.
Publisher's VersionAbstract
This paper deals with multi-agent energy management and fault tolerant control of the micro-grid powered by wind farm based on two doubly fed induction generators. The stator flux orientation has used to eliminate the active and reactive power coupling. The proposed control scheme is based on two cascades closed loops. The inner controllers concern the rotor currents. The outer controllers have a parallel configuration with the stator voltage or the stator power control. Switching between these two controllers is realized by the synchronization mechanism. All controllers are designed with Lyapunov approach associated with sliding-mode control, this solution shows good robustness against parameter variations, measurement errors and faults. The global asymptotic stability of the overall system is proven. After that, a Multi-agent energy management was proposed and tested in order to satisfy some objectives and overcome some constraints. The advantages of the wind energy integration associated with multi-agent energy management are: production cost minimization, reduction of the carbon emissions, increasing the energy autonomy and he robustness against weather conditions and faults that may occur during operation. The results confirm the effectiveness of the proposed control.
Belkacem Y, Drid S, Makouf A, CHRIFI-ALAOUI L.
Multi-agent energy management and fault tolerant control of the micro-grid powered with doubly fed induction generator wind farm. International Journal of System Assurance Engineering and Management [Internet]. 2022;13 :267-277.
Publisher's VersionAbstract
This paper deals with multi-agent energy management and fault tolerant control of the micro-grid powered by wind farm based on two doubly fed induction generators. The stator flux orientation has used to eliminate the active and reactive power coupling. The proposed control scheme is based on two cascades closed loops. The inner controllers concern the rotor currents. The outer controllers have a parallel configuration with the stator voltage or the stator power control. Switching between these two controllers is realized by the synchronization mechanism. All controllers are designed with Lyapunov approach associated with sliding-mode control, this solution shows good robustness against parameter variations, measurement errors and faults. The global asymptotic stability of the overall system is proven. After that, a Multi-agent energy management was proposed and tested in order to satisfy some objectives and overcome some constraints. The advantages of the wind energy integration associated with multi-agent energy management are: production cost minimization, reduction of the carbon emissions, increasing the energy autonomy and he robustness against weather conditions and faults that may occur during operation. The results confirm the effectiveness of the proposed control.
Belkacem Y, Drid S, Makouf A, CHRIFI-ALAOUI L.
Multi-agent energy management and fault tolerant control of the micro-grid powered with doubly fed induction generator wind farm. International Journal of System Assurance Engineering and Management [Internet]. 2022;13 :267-277.
Publisher's VersionAbstract
This paper deals with multi-agent energy management and fault tolerant control of the micro-grid powered by wind farm based on two doubly fed induction generators. The stator flux orientation has used to eliminate the active and reactive power coupling. The proposed control scheme is based on two cascades closed loops. The inner controllers concern the rotor currents. The outer controllers have a parallel configuration with the stator voltage or the stator power control. Switching between these two controllers is realized by the synchronization mechanism. All controllers are designed with Lyapunov approach associated with sliding-mode control, this solution shows good robustness against parameter variations, measurement errors and faults. The global asymptotic stability of the overall system is proven. After that, a Multi-agent energy management was proposed and tested in order to satisfy some objectives and overcome some constraints. The advantages of the wind energy integration associated with multi-agent energy management are: production cost minimization, reduction of the carbon emissions, increasing the energy autonomy and he robustness against weather conditions and faults that may occur during operation. The results confirm the effectiveness of the proposed control.
Khernane N, Boussaha T.
Neonatal Open Leg Fracture in Amniotic Band Syndrome A Case Report with a revised classification Orthopedic-Traumatology Surgery Department – Batna Hospital Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA). Faculty of Medicine. Ba. Foot & Ankle Surgery: Techniques, Reports & CasesFoot & Ankle Surgery: Techniques, Reports & Cases. 2022;2 :100171.
AbstractAmniotic band syndrome (ABS) was first described by Montgomery in Montgomery (1832). It is a poorly known congenital malformation due to strangulation of the organs by an amniotic fibrous band. Several parts of the body can be affected: for instance, skull, face, neck, trunk and musculoskeletal system. It generally associates three types of anomalies namely, amputations, deformities, and malformations. There are two genuine theories covering this syndrome; the Intrinsic Theory associating the syndrome to a germline defect and the Purely Mechanical Extrinsic Theory related to the amniotic band. These theories have thoroughly tried to explain the disease and the organ involvement (Goldfarb et al., 2009). In the current study, we report a rare case of an open fracture of both leg bones with amniotic disease in a 10-day-old neonate who underwent surgical treatment. In our case, it is a surgical emergency where we try to explain its physiopathology and show how to operate it. We discuss likewise the appropriateness of using the expressions “leg fracture” and “congenital pseudarthrosis of the leg”. Finally, we describe a revised classification by Hall (1982) and Weinzweig (1994) of ABS incorporating a stage with bone involvement.
Khernane N, Boussaha T.
Neonatal Open Leg Fracture in Amniotic Band Syndrome A Case Report with a revised classification Orthopedic-Traumatology Surgery Department – Batna Hospital Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA). Faculty of Medicine. Ba. Foot & Ankle Surgery: Techniques, Reports & CasesFoot & Ankle Surgery: Techniques, Reports & Cases. 2022;2 :100171.
AbstractAmniotic band syndrome (ABS) was first described by Montgomery in Montgomery (1832). It is a poorly known congenital malformation due to strangulation of the organs by an amniotic fibrous band. Several parts of the body can be affected: for instance, skull, face, neck, trunk and musculoskeletal system. It generally associates three types of anomalies namely, amputations, deformities, and malformations. There are two genuine theories covering this syndrome; the Intrinsic Theory associating the syndrome to a germline defect and the Purely Mechanical Extrinsic Theory related to the amniotic band. These theories have thoroughly tried to explain the disease and the organ involvement (Goldfarb et al., 2009). In the current study, we report a rare case of an open fracture of both leg bones with amniotic disease in a 10-day-old neonate who underwent surgical treatment. In our case, it is a surgical emergency where we try to explain its physiopathology and show how to operate it. We discuss likewise the appropriateness of using the expressions “leg fracture” and “congenital pseudarthrosis of the leg”. Finally, we describe a revised classification by Hall (1982) and Weinzweig (1994) of ABS incorporating a stage with bone involvement.
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R.
Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022 :1-13.
Publisher's VersionAbstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R.
Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022 :1-13.
Publisher's VersionAbstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R.
Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022 :1-13.
Publisher's VersionAbstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R.
Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022 :1-13.
Publisher's VersionAbstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R.
Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022 :1-13.
Publisher's VersionAbstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Fedala A, Adjroud O, Bennoune O, Abid-Essefi S, Foughalia A, Timoumi R.
Nephroprotective Efficacy of Selenium and Zinc Against Potassium Dichromate-Induced Renal Toxicity in Pregnant Wistar Albino Rats. Biological Trace Element Research [Internet]. 2022 :1-13.
Publisher's VersionAbstract
Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.
Benharzallah N, Bachir AS, Barbraud C.
Nest characteristics and food supply affect reproductive output of white storks Ciconia ciconia in semi-arid areas. Biologia [Internet]. 2022 :1-10.
Publisher's VersionAbstract
The aim of this study was to test the influence of nest site characteristics and food supplementation from rubbish dumps on reproductive parameters of white storks breeding in semi-arid habitats. A total of 148 nests were monitored in two colonies of white storks (control colony vs. colony that benefited from high food supply in rubbish dumps) in eastern Algeria over a six-year period (2011–2016) to measure nest characteristics and reproductive parameters (clutch size, number of hatchings, number of fledglings, breeding success). Results showed that pairs breeding at proximity from rubbish dumps had larger clutch sizes (5.1 ± 0.6 vs. 4.6 ± 0.6), hatched more chicks (4.7 ± 0.7 vs. 4.3 ± 0.7) and raised more fledglings (3.0 ± 0.9 vs. 2.6 ± 1.0) than pairs breeding far from rubbish dumps. Results also showed that clutch size was positively related to nest surface area, and that pairs nesting on electricity poles had a lower breeding success than those nesting in trees (48.9 ± 20.4% vs. 64.6 ± 17.6%). Our findings suggest that breeding outputs are strongly related to selective behavior in nest placement and food availability surrounding the nesting site.
Benharzallah N, Bachir AS, Barbraud C.
Nest characteristics and food supply affect reproductive output of white storks Ciconia ciconia in semi-arid areas. Biologia [Internet]. 2022 :1-10.
Publisher's VersionAbstract
The aim of this study was to test the influence of nest site characteristics and food supplementation from rubbish dumps on reproductive parameters of white storks breeding in semi-arid habitats. A total of 148 nests were monitored in two colonies of white storks (control colony vs. colony that benefited from high food supply in rubbish dumps) in eastern Algeria over a six-year period (2011–2016) to measure nest characteristics and reproductive parameters (clutch size, number of hatchings, number of fledglings, breeding success). Results showed that pairs breeding at proximity from rubbish dumps had larger clutch sizes (5.1 ± 0.6 vs. 4.6 ± 0.6), hatched more chicks (4.7 ± 0.7 vs. 4.3 ± 0.7) and raised more fledglings (3.0 ± 0.9 vs. 2.6 ± 1.0) than pairs breeding far from rubbish dumps. Results also showed that clutch size was positively related to nest surface area, and that pairs nesting on electricity poles had a lower breeding success than those nesting in trees (48.9 ± 20.4% vs. 64.6 ± 17.6%). Our findings suggest that breeding outputs are strongly related to selective behavior in nest placement and food availability surrounding the nesting site.