Publications

2021
Haoues M, Dahane M, Mouss K-N. Capacity planning with outsourcing opportunities under reliability and maintenance constraints. International Journal of Industrial and Systems Engineering [Internet]. 2021;37 (3) :382-409. Publisher's VersionAbstract

This paper investigates capacity planning with outsourcing under reliability-maintenance constraints. The considered supply-chain consists of a single-manufacturer and multiple-subcontractors. The manufacturer's company is composed of a single unit subject to random failures. Corrective maintenance is endorsed when failures occur, and preventive maintenance can be carried out to reduce the degradation. The high in-house costs and the incapacity motivate the manufacturer outsourcing to independent subcontractors. In addition, based on the principle of comparative advantage, the manufacturer balances between in-house capacities and outsourcing services, which minimises the total cost. The aim is to propose a new policy based on the combination between integrated-maintenance and outsourcing policies. A mathematical model and an optimisation procedure have been developed in order to determine the best in-house production-maintenance and outsourcing plans for the manufacturer while minimising the total cost. In order to show the applicability of our approach, we conduct experimentations to study the management insights.

Cherak Z, Loucif L, Moussi A, Rolain J-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. Journal of Global Antimicrobial Resistance [Internet]. 2021;25 :287-309. Publisher's VersionAbstract

Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.

Chiremsel R, Fourar A, Massouh F, Chiremsel Z. CFD analysis of unsteady and anisotropic turbulent flow in a circular-sectioned 90° bend pipe with and without ribs: A comparative computational study. Journal of Mechanical Engineering and Sciences [Internet]. 2021;15 :7964-7982. Publisher's VersionAbstract

The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 40000. In order to validate the turbulence model, numerical simulations were compared with the existing experimental data. The results are found in good agreement with the literature data. After validation of the numerical strategy, the axial velocity distribution and the anisotropy of the Reynolds stresses at several downstream longitudinal locations were obtained in order to investigate the hydrodynamic developments of the analyzed flow. The results show that in the ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for both cases that the distribution of the mean axial velocity depends faintly on the Dean number. Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend pipe with ribs.

BEDRA S, BENKOUDA S, BEDRA R, FORTAKI T. Characteristics of HTS inverted circular patches on anisotropic substrates. Journal of Computational Electronics [Internet]. 2021;20 :892-899. Publisher's VersionAbstract

In this study, an efficient full-wave method is developed for characterizing the resonant frequencies, bandwidths, and quality factors of an inverted circular superconducting patch antenna. Our technique is based on the Galerkin procedure in the Hankel transform domain (HTD) combined with the complex resistive boundary conditions. With the use of suitable Green’s functions in the HTD, the analysis is performed for the case where the superconducting circular patches is printed on an anisotropic substrate. The numerical results obtained using this approach are compared with the experimental results. These comparisons were very good, which proves the correctness and the validity of the method. It is found that the optical properties combined with optimally-chosen structural parameters of anisotropic materials can maintain control of the resonant frequency and exhibit wider bandwidth characteristics.

Bouglada MS, Naceri A, Baheddi M, Pereira-de-Oliveira L. Characterization and modelling of the rheological behaviour of blended cements based on mineral additions. European Journal of Environmental and Civil Engineering [Internet]. 2021;25 :655-672. Publisher's VersionAbstract

This paper presents an experimental study to evaluate the effect of local mineral additions (pozzolan, slag and limestone) on the rheological behaviour of based cement binder’s pastes. The binary, ternary and quaternary binder pastes were prepared with the partial clinker cement replacement limited up to 20%, according with type CEM II specifications. The cements were characterized by their geometric shapes, the reactivity and the chemical composition. An experimental design plan was used to modelling the rheological behaviour of pastes. The relatives yield stress and plastic viscosity of binder’s pastes, with normal consistency, were determined. The results showed that all the tested compositions with additions follow the same rheological behaviour law according to the Bingham model. The binder pastes rheological parameters (yield stress and viscosity) are affected by mineral additions. The highest values of the rheological parameters were measured in binary and ternary cements with limestone and pozzolan. On the other hand, the lower viscosity among the tested pastes was obtained with slag addition. The statistical approach allowed us to obtain a satisfactory modelling of viscosity and yield stress with a coefficient of determination R2 = 0.91 and 0.92, respectively and a satisfactory correlation between the viscosity and the water/binder ratio (W/B) for a normal consistency with a coefficient of determination R2 = 0.91.

Bouzghaia B, Ben Moussa M, Goudjil R, Harkat H, Pale P. Chemical composition, in vitro antioxidant and antibacterial activities of Centaurea resupinata subsp. dufourii (dostál) greuter. Natural Product Research [Internet]. 2021;35 :1-5. Publisher's VersionAbstract

The current study focuses on the chemical composition, and evaluation of antioxidant and antibacterial activity of the aerial parts of Centaurea resupinata subsp. dufourii. Using different chromatographic methods nine compounds 1–9 were isolated. The structural identification of isolated compounds was achieved using several spectroscopic methods NMR techniques (1H NMR, 13C NMR, COSY, HSQC, HMBC) and mass spectroscopy (ESI-MS) and by comparison with literature data. The structures of these compounds were identified as nicotiflorin (1), apigetrin (2), chrysoeriol (3), apigenin (4), chrysin (5), daucosterol (6), β-sitosterol (7), taraxastrerol (8) and lupeol (9). The antibacterial and antioxidant activities of ethyl acetate and n-butanol extracts have been evaluated. The antioxidant activity was assessed in vitro using DPPH radical scavenging method, which showed that ethyl acetate extract possessed an interesting antioxidant potential (IC50 = 36.263 ± 0.005 μg/mL).  

HANFER M, Benramdane Z, Cheriet T, Sarri D, Menad A, Mancini I, Seghiri R, Ameddah S. Chemical constituents, in vitro anti-inflammatory, antioxidant and hemostatic activities of the n-butanol extract of Hyacinthoides lingulata (Poir.) Rothm. Natural Product Research [Internet]. 2021;36 (12) :3124-3128. Publisher's VersionAbstract

The phytochemical profile obtained from LC-ESI-MS/MS analysis of the n-butanol extract (BEHL) from the North African endemic plant Hyacinthoides lingulata (Poir.) Rothm. brought about the identification of ten glycosylated derivatives of apigenin and luteolin flavones. For the same plant extract, in vitro anti-inflammatory (hypotonic induced hemolysis and heat induced haemolysis assay) and antioxidant (DPPH and β-Carotene) activities were evaluated observing high inflammatory inhibition by protecting membrane stability of erythrocyte in both heat (84.70 ± 0.24%) and hypotonic induced hemolysis (79.45 ± 0.12%). A remarkable hemostatic effect was also established by measuring the coagulation time (15.95 ± 1.05 s at a dose of 1 mg/mL) of decalcified plasma related to its phytochemical content. It is the first report on combined chemical components and biological evaluation of this specific plant.

Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization [Internet]. 2021;9 :131-145. Publisher's VersionAbstract

A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsies are the main screening techniques, which require either, expensive devices or personal qualified; but some countries still lack access due to economic, social, or cultural issues. As an alternative diagnosis methodology for breast cancer, this study presents a computer-aided diagnosis system based on convolutional neural networks (CNN) using thermal images. We demonstrate that CNNs are faster, reliable and robust when compared with different techniques. We study the influence of data pre-processing, data augmentation and database size on several CAD models. Among the 57 patients database, our CNN models obtained a higher accuracy (92%) and F1-score (92%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50, and Inception. This study exhibits that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database (up to 33%) but without data-augmentation. Finally, this study proposes a computer-aided system for breast cancer diagnosis but also, it stands as baseline research on the influence of data-augmentation and database size for breast cancer diagnosis from thermal images with CNNs

BENDJEDDOU YACINE, Abdessemed R, MERABET ELKHEIR. COMMANDE A FLUX VIRTUEL ORIENTE DE LA GENERATRICE ASYNCHRONE A CAGE DOUBLE ÉTOILE. Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique [Internet]. 2021;66 (2) :2021. Publisher's VersionAbstract

Cet article est consacré à l’étude des performances de la génératrice asynchrone à cage double étoile (GASDE) en site isolé. Le système de commande est composé d’une GASDE raccordé à un bus continu et une charge en sortie de deux redresseurs à commande MLI. Une étude comparative entre la technique de commande conventionnelle et la commande adaptée basée sur l’introduction de la SVM-PI-flou et un nouvel estimateur de flux (flux virtuel statorique) afin d’améliorer la qualité d’énergie et d’atténuer les harmoniques du courant.

Hadjira A, Salhi H, El Hafa F. A Comparative Study between ARIMA Model, Holt-Winters–No Seasonal and Fuzzy Time Series for New Cases of COVID-19 in Algeria. American Journal of Public Health [Internet]. 2021;9 (6) :248-256. Publisher's VersionAbstract

Background: Coronavirus disease has become a worldwide threat affecting almost every country in the world. The spread of the virus is likely to continue unabated. The aim of this study is to compare between Autoregressive Integrated Moving Average (ARIMA) model, Fuzzy time series and Holt-Winters – No seasonal for forecasting the COVID-19 new cases in Algeria. 

Methods: Three different models to predict the number of Covid-19 new cases in Algeria were used. The number of new cases of COVID-19 in Algeria during the period from 24th February 2020 to 31th July 2021 was modeled according to ARIMA(4,1,2) model, Five based Fuzzy time series models including the Chen model, Heuristic Huareng model, Singh model, Abbasov-Manedova model and NFTS model, and Holt-Winters – No seasonal. 

Results: The predictive values were obtained from the 1st August 2021 to 31th December 2021. According to a set of criteria (ME, MAE, MSE, RMSE, U), we found that the FTNS model is the most accurate and best generating model for the values of the number of new cases of Covid-19. 

Conclusion: To the best of our knowledge, this is the first comparative study of three models of forecasting of Covid-19 new cases in Algeria. This study shows that ARIMA models with optimally selected covariates are useful tools for monitoring and predicting trends of COVID-19 cases in Algeria. Moreover, this forecast will help the Health authorities to be better prepared to fight the epidemic by engaging their healthcare facilities.

Nadjiha H, Meriem B, Tarek B, Hayet ML. A Comparative Study Between Data-Based Approaches Under Earlier Failure Detection, in Communication and Intelligent Systems. Springer ; 2021 :235-239. Publisher's VersionAbstract

A comparative study between a set of chosen machine learning tools for direct remaining useful life prediction is presented in this work. The main objective of this study is to select the appropriate prediction tool for health estimation of aircraft engines for future uses. The training algorithms are evaluated using “time-varying” data retrieved from Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) developed by NASA. The training and testing processes of each algorithm are carried out under the same circumstances using the similar initial condition and evaluation sets. The results prove that among the studied training tools, Support vector machine (SVM) achieved the best results.

Roubache T, Chaouch S, Said MSN. Comparative Study of Different Fault-Tolerant Control Strategies for Three-Phase Induction Motor, in 9th (Online) International Conference on Applied Analysis and Mathematical Modeling (ICAAMM21) June 11-13, 2021, Istanbul-Turkey. ; 2021 :30. Publisher's VersionAbstract
: In this paper, we have studied a different fault tolerant control (FTC) strategies for a three-phase induction motor (3p-IM). Further we introduce Backstepping controller (BC) and Input-output linearization controller (IOLC). To provide a direct comparison between these FTCs approaches, the performances are evaluated using the control of 3p-IM under failures, variable speed, and variable parameters. A comparison between the two control strategies is proposed to prove the most robust one. The simulation results show the robustness and good performance of the fault tolerant control with Input-output linearization controller compared to one with Backstepping controller. The FTC with IOLC is more stable and robust against failures, load torque perturbation and speed reversion
Gheraissa N, Bouras F, Khaldi F, Hidouri A, Rehouma F, Dogga A. A comparative study of the combustion supplied by multi-fuels: Computational analysis. Energy Reports [Internet]. 2021;7 :3819-3832. Publisher's VersionAbstract

The current paper illustrates the numerical study of the global combustion parameters. It mainly focused on the computational analysis that investigated the non-premixed combustion in the cylindrical burner. Therefore, we selected many fuels to supply the burner like Algerian biogas, CH4, C3H8, H2, natural gas, and diesel to compare their aerothermochemical characteristics variables. At first, we applied the numerical methods that confirm the solution convergence like combustion models and grid selection. After that, we resolved the aerothermochemical set equations of combustion using the coupled k-ɛɛ turbulent dynamic model with the probability density function approach. These models are also used to surmount the closer in the set of combustion equations too. Moreover, we integrated the pollutant computation model based on the chemical reactions of NO production. Thus, we evaluated each considered fuel’s NO emission during all combustion fuels cases. Accordingly, the results show that Algerian biogas and hydrogen have special characteristics compared to other cases of fuels. The most prominent characteristics are: the high level of the mixture and burn relative to other fuels, their low pollutants emissions (CO and NO), and the proportional relationship between the OH and NO production. Consequently, biogas and H2 conserve the impact on energy and the environment.

Mansouri D, Bendoukha S, Abdelmalek S, Youkana A. On the complete synchronization of a time-fractional reaction–diffusion system with the Newton–Leipnik nonlinearity. Applicable Analysis [Internet]. 2021;100 :675-694. Publisher's VersionAbstract

In this paper, we consider a time-fractional reaction-diffusion system with the same nonlinearities of the Newton-Leipnik chaotic system. Through analytical tools and numerical results, we derive sufficient conditions for the asymptotic stability of the proposed model and show the existence of chaos. We also propose a nonlinear synchronization controller for a pair of systems and establish the local and global asymptotic convergence of the trajectories by means of fractional stability theory and the Lyapunov method.

Selloum R, Ameddah H, Brioua M. Computer Aided Inspection by Reverse Engineering for Reproduction of Gear Teeth. International Conference on Advanced Materials Mechanics & Manufacturing [Internet]. 2021 :292-298. Publisher's VersionAbstract
In the industry, automated inspection is important for ensuring the high quality and allows acceleration of procedures for quality control of parts or mechanical assemblies. Although significant progress has been made in precision machining of complex surfaces, precision inspection of such surfaces remains a difficult problem. Thus the problem of the conformity of the parts of complex geometry is felt more and more. Motivated by the need to increase quality and reduce costs, and supported by the progress made in the field of it as well as the automation of production which in recent years has seen a considerable evolution in all these stages: from design to control through manufacturing. Due to, we used a 3D computer aided inspection technique on a physical gear using a coordinate measuring machine equipped with a “PC-DMIS” measurement and inspection software. Our work consists in developing a procedure for inspection for reproduction of gear profile by reconstruction of a circle involute gear from a cloud point’s measurement. In order to obtain a reliable result. In this works, we design the CAD-model of the part as accurately as possible (using a mathematical model) and matched with the 3D points cloud that represents the measurement that obtained from scanner. we compare the measurement cloud points from coordinate measurement machine with the mathematical model of construction by ICP (Iterative Closest Point) methods in order to obtain a conformed result and to show the impact of the dimensional inspection and geometric.
Fourar Y-O, Djebabra MEBAREK, Benhassine W, Boubaker L. Contribution of PCA/K-means methods to the mixed assessment of patient safety culture. International Journal of Health Governance [Internet]. 2021. Publisher's VersionAbstract

Purpose

The assessment of patient safety culture (PSC) is a major priority for healthcare providers. It is often realized using quantitative approaches (questionnaires) separately from qualitative ones (patient safety culture maturity model (PSCMM)). These approaches suffer from certain major limits. Therefore, the aim of the present study is to overcome these limits and to propose a novel approach to PSC assessment.

Design/methodology/approach

The proposed approach consists of evaluating PSC in a set of healthcare establishments (HEs) using the HSOPSC questionnaire. After that, principal component analysis (PCA) and K-means algorithm were applied on PSC dimensional scores in order to aggregate them into macro dimensions. The latter were used to overcome the limits of PSC dimensional assessment and to propose a quantitative PSCMM.

Findings

PSC dimensions are grouped into three macro dimensions. Their capitalization permits their association with safety actors related to PSC promotion. Consequently, a quantitative PSC maturity matrix was proposed. Problematic PSC dimensions for the studied HEs are “Non-punitive response to error”, “Staffing”, “Communication openness”. Their PSC maturity level was found underdeveloped due to a managerial style that favors a “blame culture”.

Originality/value

A combined quali-quantitative assessment framework for PSC was proposed in the present study as recommended by a number of researchers but, to the best of our knowledge, few or no studies were devoted to it. The results can be projected for improvement and accreditation purposes, where different PSC stakeholders can be implicated as suggested by international standards.

Boulagouas W, García-Herrero S, Chaib R, García SH, Djebabra M. On the contribution to the alignment during an organizational change: Measurement of job satisfaction with working conditions. Journal of safety research [Internet]. 2021;76 :289-300. Publisher's VersionAbstract

Introduction: Modern approaches to Occupational Health and Safety have acknowledged the important contribution that continuous improvements to working conditions can make to the motivation of employees, their subsequent performance, and therefore to the competitiveness of the company. Despite this fact, organizational change initiatives represent a path less traveled by employees. Specialized literature has drawn on the fact that employees’ satisfaction presents both the foundation and catalyst for effective implementation of improvements to working conditions. Method: This paper conceptualizes the alignment of employees through measurement of job satisfaction and uses the Bayesian Network to assess the influence of human factors, particularly the cognitive, emotional, and behavioral aspects. Toward this aim, the Bayesian Network is evaluated through a cross-validation process, and a sensitivity analysis is then conducted for each influential dimension: emotional, cognitive, and behavioral. Results: The results reveal that these three dimensions are interrelated and have a direct influence on job satisfaction and employees’ alignment during the organization change. Further, they suggest that the best strategy for enhanced alignment and smooth conduct of organizational changes is simultaneous enhancement of the three dimensions. Practical applications: This study shows the influence of emotional, cognitive, and behavioral dimensions on job satisfaction and employees’ alignment during the organizational change. Furthermore, it elaborates the way to develop efficient and effective strategies for a successful change implementation and sustained alignment.

Heddar Y, Djebabra M, Saadi S. Contribution to the quantitative study of violence in Algerian hospital environment. 11th Annual International Conference on Industrial Engineering and Operations Management, IEOM 2021 [Internet]. 2021 :2042-2042. Publisher's VersionAbstract
The workplace, and more particularly the healthcare sector, has recently experienced a staggering increase in violence. These aggressive behaviors are resulting in considerable consequences on healthcare workers, both in terms of mental and physical health. In light of this observation, this study aims to provide a quantitative analysis of the potential causes leading to violence in Algerian hospitals, which have become the place where tensions arise, especially during these uncertain times caused by the COVID-19 pandemic. Therefore, we started with conducting a field survey, in order to highlight the main causes behind this violence, as well as the strategy in terms of how it is managed as a risk. Then we used ISHIKAWA diagrams to classify predefined causes into several categories and anticipate the likelihood of such violent behaviors. Finally, the results of this study revealed that working conditions were the main cause of violence in Algerian hospitals. In order to remedy this gap, we recommend improving the healthcare staff well-being, as well as prioritizing proactive measures preventing violent behaviors
Bouhoufani O, Hamchi I. Correction to: Coupled System of Nonlinear Hyperbolic Equations with Variable-Exponents: Global Existence and Stability. Mediterranean Journal of Mathematics [Internet]. 2021;18 :1-2. Publisher's Version
Bellal SE, Mouss LH, Sahnoun M’hammed, Messaadia M. Cost Optimisation for Wheelchair Redesign. 2021 1st International Conference On Cyber Management And Engineering (CyMaEn) [Internet]. 2021 :1-5. Publisher's VersionAbstract
Requirements of users in developing countries differ from those of developed countries. This difference can be seen through wheelchair displacement in infrastructures that don't meet international standards. However, developing countries are obliged to purchase products from developed countries that don't necessarily meet all user's requirements. The modification of these requirements will generate disruption on all the supply chain. This paper proposes a model for optimising the cost of requirement modification on the supply chain and seeks to evaluate the introduction of a new requirement on an existing product/process. This model is adapted to the redesign and development of products, such as wheelchairs, satisfying specific Algerian end-user requirements.

Pages